LUXE: measure critical field without breaking down vacuum

Nina Elkina, Tom Teter and Eugenii Liakho

HI-Jena

March 7, Jena

QED in External Field

Nonlinearity in classical picture

Dynamical quantum parameter

$$a_0 \frac{\sqrt{-\langle A^\mu A_\mu \rangle}}{mc} \sim \frac{e E_0}{mc \omega_0}$$

$$\chi = \frac{e\hbar\sqrt{-(F^{\mu\nu}p_{\nu})^2}}{m^3c^4} \sim \gamma \frac{E_{\perp}}{E_{S}}$$

regimes	$a_0 << 1$	$a_0 \ge 1$
$\chi << 1$	classical non-relativistic	classical relativistic
$\chi \geq 1$	perturbative QED	non-perturbative QED

QED regime starts for Laser Field + particle ($\gamma \simeq a_0$)

$$\chi \simeq \frac{E_{\perp}}{E_{S}} \gamma \simeq \frac{\hbar \omega_{0}}{mc^{2}} a_{0}^{2} \geq 1 \rightarrow a_{0} \geq \sqrt{\frac{mc^{2}}{\hbar \omega}} \sim 700, \quad (I \geq 10^{24} W/cm^{2})$$

Critical field defined as $eE_{cr}I_C \simeq mc^2$

$$E_{cr} = \frac{m^2 c^3}{e\hbar} = 1.3 \times 10^{16} V/cm, \quad I_L = \frac{c}{4\pi} E_{cr}^2 \simeq 5 \times 10^{29} W/cm^2$$

matching perturbative/non-perturbative QED

$$\Gamma = \frac{\alpha m_e^2}{4\omega_i} F_{\gamma}(a_0, \chi_{\gamma}),$$

$$F_{\gamma}(\xi_0, \chi_{\gamma}) = \sum_{n>n_0}^{\infty} \int_1^{\nu_n} \frac{d\nu}{\nu \sqrt{\nu(\nu-1)}} \Big[2J_n^2(z_{\nu}) - \xi^2(2\nu-1)(J_{n+1}^2(z_{\nu}) + J_{n-1}^2(z_{\nu}) - 2J_n^2(z_{\nu})) \Big]$$

First order processes (with polarization effects)¹

$$\frac{dW_{\gamma}}{d\varepsilon_{\gamma}} = \frac{-\alpha m^{2}}{\varepsilon_{e}^{2}} \left\{ Ai_{1}(x) + \left[\frac{g(\phi)}{x} + \chi_{\gamma} \sqrt{x} \right] Ai'(x) \right\}, \quad (1)$$

$$\frac{dW_e}{d\varepsilon_e} = \frac{+\alpha m^2}{\varepsilon_\gamma^2} \left\{ Ai_1(x) + \left[\frac{g(\phi)}{x} - \chi_\gamma \sqrt{x} \right] Ai'(x) \right\}, \quad (2)$$

where polarization effects are in $g(\phi) = 2\cos^2\phi + 1$ photon emission pair production

¹B. King, N. Elkina, H. Ruhl, Photon polarization in electron-seeded pair-creation cascades, arXiv:1301.7001

LUAE: measure critic

Experimental measurement of critical field²

Rate of e^\pm pair production $\xi << 1$ (but not to small)

$$\Gamma_{\pm} \propto rac{3}{16} \sqrt{rac{3}{2}} lpha m_{
m e} (1-\cos(heta)) rac{|ec{E}|}{E_c} \exp\left[-rac{8}{3} rac{1}{1+\cos heta} rac{m_{
m e} c^2}{\hbar\omega} rac{E_c}{|ec{E}|}
ight]$$

 θ is angle between $\gamma\text{-quanta}$ and laser pulse direction Critical field $\textit{E}_{\textit{c}}$ can be deduced if

- 1. have energetic enough γ source (10-20 GeV)
- 2. Descent laser intensity $I \ge 10^{20} \ W/cm^2$
- 3. if we know field structure in focus

LUXE project (Hamburg-Jena)

	λ	I, a ₀	ε_e	ε_{γ}	χ_e/χ_γ	a 0
SLAC	527 nm	$10^{18}W/cm^{2}$	47 GeV	29.2GeV	0.3/0.2	0.3
LUXE	800 nm	$10^{20} W/cm^2$	17.5 GeV	17.5 GeV (?)	0.80109	4-6

Brehmstrahlung spectra, e^- : 17.5 GeV (GEANT4)

Sasha's Simulation

³O. Borysov, slides Dec.13, 2018

features of PIC-ANTARES code

$$\left(\frac{\partial}{\partial t} + \frac{\vec{p}}{\gamma m} \cdot \frac{\partial}{\partial \vec{r}} + \vec{F} \cdot \frac{\partial}{\partial \vec{p}}\right) f(\vec{r}, \vec{p}, t)$$

$$= \underbrace{\int d^3k \, w_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p} + \vec{k}) f(\vec{r}, \vec{p} + \vec{k}, t)}_{GAIN} - \underbrace{f(\vec{r}, \vec{p}, t) \int d^3k \, W_{rad}^{\vec{E}, \vec{B}}(\vec{k}, \vec{p}, t)}_{GAIN}$$

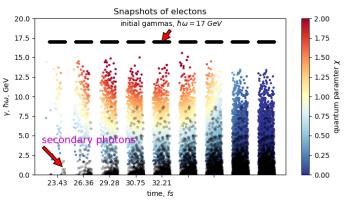
- Specific features of PIC-ANTARES code
- Descent event generators
- polarization effects
- norm-conserving integrators
- Adaptive mesh and particles

Parameter for head on simulation (LUXE)

	$E_{pulse}, \mu J$	angle	focal spot, $\sigma_{\perp}\mu$ m	duration, σ_{\parallel} , ps
given	$3.5 \cdot 10^6$	$(3/10)2\pi$	10	0.035
normed	$a_0 = 4.7577$		$12.5\lambda_0$	13.116 · T

where
$$\lambda_0=2\pi(c/\omega_0)=0.8\mu m$$
 and $T_0=2\pi/\omega_0=2.6685 fs$

$$I = \frac{2E}{\pi w_0^2 \tau_0} = \frac{2 \cdot 3.5[J]}{\pi 10^2 [\mu m] 35[fs]} = 6.3662 \cdot 10^{19} W/cm^2$$

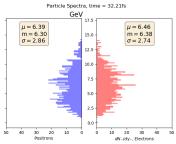

in terms of a_0

$$a_0 = \sqrt{\frac{I_0[W/cm^2] \cdot \lambda^2[\mu m]}{1.8 \cdot 10^{18}}} = 4.7577$$

Head on collision of thin photon bunch $\hbar\omega=17\,\text{GeV}$ and duration of 8 fs

Head on collision


presence of laser pulse is illuminated by χ (color-coded)



 γ -bunch generates e^{\pm} when χ is high enough (inside laser pulse) efficiency: $N_{\gamma}=10^4$ creates $N_{e^{\pm}}=1092$

Particles spectra

Setup $\theta = 17^{\circ}$, $a_0 = 6$, $\hbar \omega = 17.5 \, GeV$, ⁴

⁴partially simulated on herera cluster

Working program February-April

- Clear up theoretical consideration (Tom+Nina)
 - 1. How good cross-field approximation at $a_0 \sim 1$
 - 2. Space/time variation in laser pulse
 - 3. what about Trident processes (were small even in SLAC-144)
 - 4. number of absorbed photons are still countable, or not?
- still discrepancy in Bremstrahlung spectra (Tom+Evgenii)
- coding of everything (Nina)
 - 1. pre-fetching probabilities for Monte-Carlo (accelerate!)
 - 2. reducing noise via stratified sampling of distribution
 - 3. multiple emission of soft photons
 - 4. visualization and post-processing tools
 - 5. 40-80 cores of Hemera reserved for 15/03-1/04
- Analysis of polarization effects on spectra (Nina+Tom)
- Prototype for Virtual Detector (VD)

Summary&Conclusion

- Measuring critical field E_c at the borderline between perturbative/non-perturbative QED
- ullet based on nonlinear Breit-Wheeler e^\pm pair production
- in colliding 17 GeV γ -beam with laser pulse
- work in progress:
 - Pairs are produced in rather moderate amount
 - only few 2nd and 3rd cascades step (but better then SLAC)
 - \circ Effective colling of e^{\pm} pairs due to nonlinear Compton scattering
- short term plans (for meeting in April)
 - Polarization effects
 - Characterization of higher order process (Trident, etc)
 - Developing virtual detectors
 - o Reconstruction of laser field near focal plane