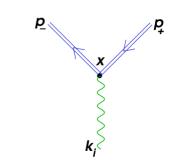

Bremsstrahlung Photon Production for BPPP Study

Oleksandr Borysov

LUXE Meeting March 7, 2019

Photon-Photon collisions at LUXE

Preliminary estimates!

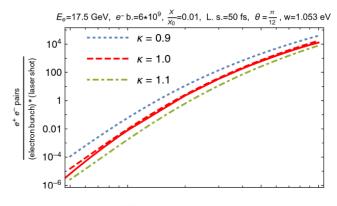

Laser-assisted pair production¹

The rate of laser-assisted one photon pair production (OPPP) rate:

$$\Gamma_{\rm OPPP} = \frac{\alpha m_e^2}{4\,\omega_{\rm i}} \, F_{\gamma}(\xi, \chi_{\gamma})$$

Bremsstrahlung photon pair production (BPPP):

$$\Gamma_{\text{BPPP}} = \frac{\alpha m_e^2}{4} \int_0^{E_e} \frac{d\omega_i}{\omega_i} \frac{dN_\gamma}{d\omega_i} F_\gamma(\xi, \chi_\gamma(\omega_i))$$



Approximation for bremsstrahlung photon spectrum:

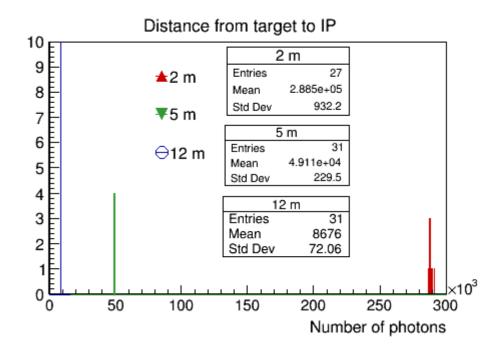
$$\omega_i \frac{\mathrm{d}N_{\gamma}}{\mathrm{d}\omega_i} \approx \left[\frac{4}{3} - \frac{4}{3} \left(\frac{\omega_i}{E_e} \right) + \left(\frac{\omega_i}{E_e} \right)^2 \right] \frac{X}{X_0}$$

At high laser intensities $\xi \gtrsim 1/\sqrt{\chi_e} \gg 1$

$$\xi \gtrsim 1/\sqrt{\chi_e} \gg 1$$

laser-assisted BPPP rate:
$$\Gamma_{\rm BPPP} o rac{lpha\,m_e^2}{E_e} rac{9}{128} \sqrt{rac{3}{2}}\,\chi_e^2\,e^{-rac{8}{3\chi_e}\left(1-rac{1}{15\,\xi^2}
ight)} rac{X}{X_0}$$

For comparison between paper results and MC:

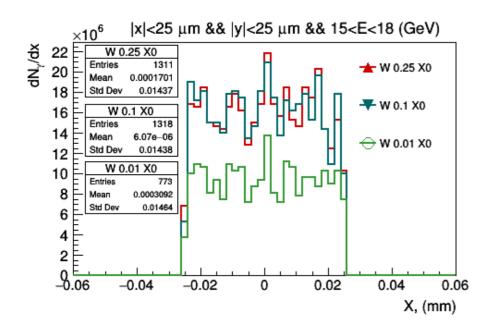

- Test bremsstrahlung MC production and PDG formula;
- Take into account space distribution of the laser intensity;

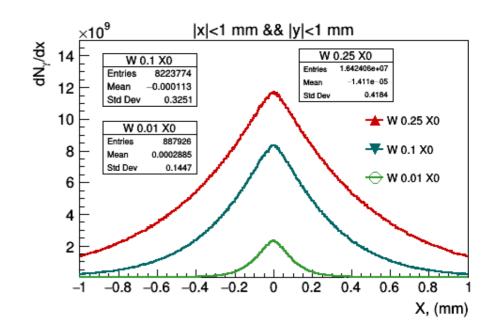
¹ A. Hartin, A. Ringwald, and N. Tapia Measuring the Boiling Point of the Vacuum of Quantum Electrodynamics [arXiv:1807.10670] Presented at LUXE meeting August 9, 2018.

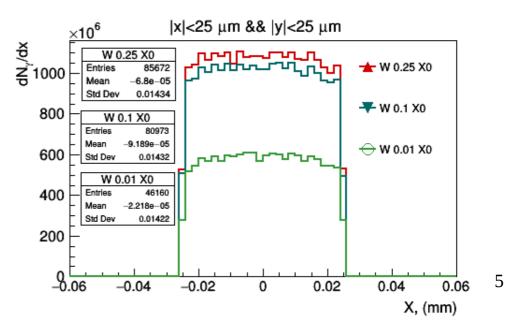
Number of photons

- Geant4 simulation;
- Tungsten target 1%X0 (35um) at different distance to IP;
- Gaussian beam focused on IP;
- 6.25e7 electrons;

Number of photons inside |x|<25um and |y|<25um around IP.

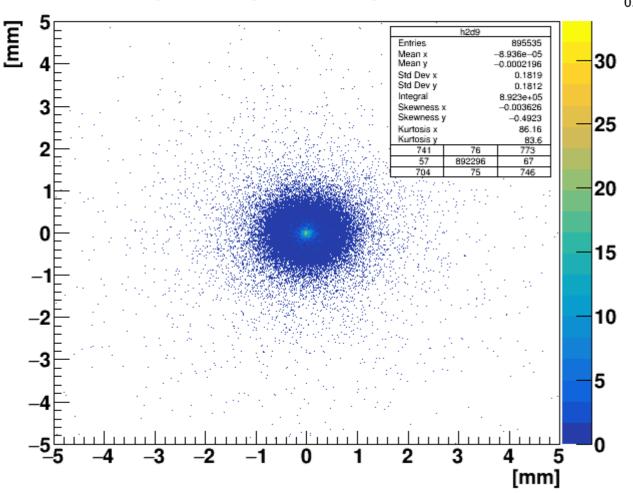

Within 10% scales as $N \sim \frac{1}{l}$

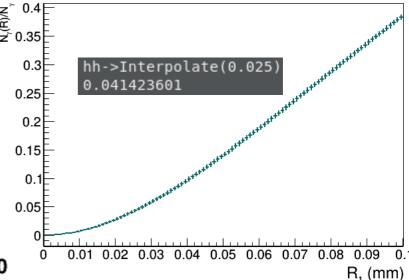

Z, (m)	Z^2	N_Gamma	Z1^2 / Z2^2	N2 / N1		Z1^2 / Z2^2	N2 / N1	
2	4	2.89E+05	6.25	5.87	0.94	36	33.2565	0.924
5	25	4.91E+04	5.76	5.66	0.98			
12	144	8675						


Bremsstrahlung Production

- Gaussian beam;
- Different tungsten thickness, 2m from IP;
- 10M electrons;
- Bin content multiplied by 625/bin_width.

The fraction of photons inside |x|<25um and |y|<25um can be estimated as 46160/887926 = 0.052. More accurate estimation is on the next page.

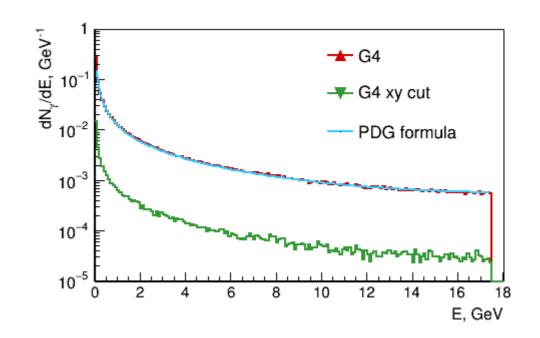




Fraction of photons as a function of spot size (R)

Tungsten 1%X0.
Taking into account overflow
and underflow bins (~0.3%)
the fraction of photons inside R < 25um is 4.1%

photons position x, y at exit




```
fSumw[2]=0.00015405, x=0.0015, error=0.000221008
fSumw[3]=0.000448602, x=0.0025, error=0.000352155
fSumw[4]=0.000857876, x=0.0035, error=0.000522147
fSumw[5]=0.0014317, x=0.0045, error=0.000620522
fSumw[6]=0.00212143, x=0.0055, error=0.00074042
fSumw[7]=0.00295595, x=0.0065, error=0.000892894
fSumw[8]=0.00391991, x=0.0075, error=0.00102318
fSumw[9]=0.00501985, x=0.0085, error=0.00118923
fSumw[10]=0.00626558, x=0.0095, error=0.00130266
fSumw[11]=0.00762877, x=0.0105, error=0.00144064
fSumw[12]=0.00913195, x=0.0115, error=0.00156876
fSumw[13]=0.0107534, x=0.0125, error=0.00169864
fSumw[14]=0.012512, x=0.0135, error=0.00185508
fSumw[15]=0.0144505, x=0.0145, error=0.00198781
fSumw[16]=0.0164402, x=0.0155, error=0.00201245
fSumw[17]=0.0186171, x=0.0165, error=0.00226603
fSumw[18]=0.0209167, x=0.0175, error=0.0023822
fSumw[19]=0.0233341, x=0.0185, error=0.00245478
fSumw[20]=0.0258498, x=0.0195, error=0.00258693
fSumw[21]=0.0285121, x=0.0205, error=0.00258553
fSumw[22]=0.0311968, x=0.0215, error=0.00277535
fSumw[23]=0.03397, x=0.0225, error=0.0028438
fSumw[24]=0.0368845, x=0.0235, error=0.00296327
fSumw[25]=0.0398967, x=0.0245, error=0.00298483
fSumw[26]=0.0429505. x=0.0255. error=0.003063
```

Bremsstrahlung production Gent4 vs PDG formula

PDG formula for bremsstruhlung production:

$$\omega_i \frac{\mathrm{d}N_\gamma}{\mathrm{d}\omega_i} \approx \left[\frac{4}{3} - \frac{4}{3} \left(\frac{\omega_i}{E_e} \right) + \left(\frac{\omega_i}{E_e} \right)^2 \right] \frac{X}{X_0}$$

- Gaussian beam;
- Tungsten target 1%X0 (35um), 2m from IP;
- 10M electrons
- Two histograms are compered:
 - |x| < 1mm and |y| < 1mm;
 - |x| < 25um and |y| < 25um.

Summary and plans

- Bremsstrahlung photons were generated in Geant4 simulation with 1%X0 tungsten target 2m, 5m and 12 m to IP and are used for BPPP simulation study.
- Number of Bremsstrahlung photons in IP area scales with the distance from the target as $1/L^2$ (within 10%).
- Number and spectrum of bremsstrahlung photons produced in Geant4 without geometrical constraints agree well with PDG recommended formula.
- Geometrical selection criteria reduce the number of bremsstrahlung photons in IP down to ~4%, but does not change the spectrum.
- Internal note on bremsstrahlung photons production for LUXE is in preparation.

Electron and laser beam parameters

E_pulse, μJ	Crossing angle, rad		Laser σz, ps	N Electrons		Electron σy, mm	
3.5*10^6	0.3	10	0.035	6.25E+09	0.005	0.005	0.08

- Laser wavelength = 800.00 nm (1.5498 eV);
- Circular polarized.