

DPG Spring Meeting 2019, Aachen

CP measurement in

Andrea Cardini, Elisabetta Gallo, Teresa Lenz, Mareike Mayer, Alexei Raspereza, Merijn van de Klundert

Higgs CP nature

- The SM predicts only one Higgs boson, with spin-parity 0⁺
- Run 1 constraints from H → VV excluded a pseudoscalar Higgs

- The VBF $H \rightarrow 4l + VBF H \rightarrow \tau \tau$ studies from Run2 [CMS-PAS-HIG-17-034] placed tight constraints on a CP-odd anomalous coupling in HVV
- However a CP-odd coupling in the Yukawa interactions is not excluded yet

The possibility of a small CP-mixing is still open and could appear in fermionic decays

CP measurement in H→ t t

- CP-mixing may appear in the H→τ τ coupling at leading order:
 - $-L_{Y} = -\frac{m_{\tau}}{v} k_{\tau} (\cos \phi_{\tau} \, \overline{\tau} \, \tau + \sin \phi_{\tau} \, \overline{\tau} \, i \, \gamma_{5} \, \tau) h$
 - SM prediction: ϕ_{τ} = 0
- To measure φ_τ we need to look at the spin correlation of tau decay products:

The acoplanarity angle

- To access the spin correlation we need to measure the angle between the τ decay planes
- In the Higgs rest frame this angle would be preferably either 0 or π in the case of pure CP states
- The Higgs rest frame is generally not accessible at LHC
 ⇒ the ZMF of the charged decay products is used instead

The acoplanarity angle

- To access the spin correlation we need to measure the angle between the τ decay planes
- In the Higgs rest frame this angle would be preferably either 0 or π in the case of pure CP states
- The Higgs rest frame is generally not accessible at LHC
 ⇒ the ZMF of the charged decay products is used instead

τ branching ratios

Number of prongs (charged decay products)

Main exclusive decay channels

The acoplanarity angle

Each plane is identified by 2 vector:

– One is the momenta of the charged decay product $(\pi^{\pm}, \mu^{\pm}, e^{\pm}, a_1)$

- The other is chosen depending on the decay channel:
 - 1 Prong: IP vector
 - 1 Prong + π^0 s: momenta of the π^0 s
 - 3 Prong: vector connecting PV and SV

The acoplanarity angle

Each plane is identified by 2 vector:

- One is the momenta of the charged decay product $(\pi^{\pm}, \mu^{\pm}, e^{\pm}, a_1)$
- The other is chosen depending on the decay channel:
 - 1 Prong: IP vector
 - 1 Prong + π^{0} s: momenta of the π^{0} s
 - 3 Prong: vector connecting PV and SV

The acoplanarity angle is thus reconstructed, but how do we extract the **CP-mixing angle**?

CP mixing angle

The mixing angle will appear as a phase shift with respect to the CP-even distribution

H → ττ cross section:

$$\frac{d\sigma}{d\varphi_{CP}^*} \propto -\cos(\varphi_{CP}^* - 2\varphi_t)$$

CP angle at generator level

Boost reference vector $\hat{n}^{*\pm}$ in ZMF of charged decay products

Use transverse components with respect to the charged prong momenta in that frame: \hat{n}^{*}

$$\phi^* = \arccos(\hat{n}_{\perp}^{*+} \cdot \hat{n}_{\perp}^{*-})$$

$$O_{CP}^* = \hat{q}^{*-} \cdot (\hat{n}_{\perp}^{*+} \times \hat{n}_{\perp}^{*-})$$

$$\phi_{CP} = \begin{cases} \phi^* & \text{if } O_{CP}^* \geqslant 0 \\ 2\pi - \phi^* & \text{if } O_{CP}^* < 0 \end{cases}$$

Tau 1 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm}$ Tau 2 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm}$

No cuts are applied for these gen level studies Results at reconstruction level will be shown later

Results using π⁰s

Tau 1 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm} + \pi^{0}$ Tau 2 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm} + \pi^{0}$

The π^0 momenta is boosted in the ZMF of the charged π .

The acoplanarity angle is calculated in a similar way.

Using a lepton as prong

Tau 1 decay mode: $\tau^{\pm} \rightarrow \mu^{\pm}$ Tau 2 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm}$

Tau 1 decay mode: $\tau^{\pm} \rightarrow e^{\pm}$ Tau 2 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm} + \pi^{0}$

3 Prong channel

Tau 1 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm}$

Tau 2 decay mode: $\tau^{\pm} \rightarrow a_1$ inclusive

The spin correlation changes depending on the polarization of the a_1 meson.

A categorization based on the a_1 polarization is thus currently being developed.

Reconstruction level

Inclusive selection region

A cut on m_T is used to reduce the W+jets bkg

Both plots show a good data / MC agreement

Inclusive selection region

As expected, the backgrounds appear flat, while a modulation can be seen for the signal.

Summary and prospects

- Gen level studies look promising for the measurement of the CP-mixing angle
- At reco level the good Data/MC agreement is a good starting point for the measurement

- The studies will be carried on at reco level in the most sensitive channels to maximize the sensitivity to CP-mixing
- To further improve the sensitivity the use of Machine Learning could prove decisive

CP measurement in

Andrea Cardini

Questions?

Quick recap for 3-prong

- The 3-prong channel is dominated by the a₁ resonance
- However the a₁ meson has spin
 1 ⇒ L and T polarization have opposite spin correlation with the τ
- A categorization based on the a₁ polarization may be needed to study the spin correlation

$a_1 \rightarrow 3\pi$

Polarization measurement

$$\cos\beta = \frac{\vec{p}_3(\vec{p}_1 \times \vec{p}_2)}{|\vec{p}_{3\pi}|T}$$

where:

$$T = \frac{1}{2}\sqrt{-\lambda(B_1, B_2, B_3)}$$

$$\lambda(B_1, B_2, B_3) = B_1^2 + B_2^2 + B_3^2 - 2B_1B_2 - 2B_1B_3 - 2B_2B_3$$

$$B_i = \frac{(E_i E_{3\pi} - \vec{p}_{3\pi} \vec{p}_i)^2 - Q^2 m_{\pi}^2}{Q^2}$$

3 Prong channel

Tau 1 decay mode: $\tau^{\pm} \rightarrow a_1$ transv. pol.

Tau 2 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm}$

Tau 1 decay mode: $\tau^{\pm} \rightarrow a_1$ long. pol. Tau 2 decay mode: $\tau^{\pm} \rightarrow \pi^{\pm} + \pi^0$

Polarimetric vectors

- The polarimetric vector are computed by a routine in TauSpinner (which is part of the TAUOLA tool)
- Using these vectors it is possible to define define 2 interesting observables:

"Monte Carlo, fitting and Machine Learning for Tau leptons", Vladimir Cherepanov, Elzbieta Richter-Was, Zbigniew Was