

Update of European Strategy for Particle Physics

Beate Heinemann

Deutsches Elektronen-Synchrotron (DESY Hamburg) und Albert-Ludwigs Universität Freiburg

QU meeting, May 26th 2019

What is the European Strategy of Particle Physics?

- Last Update: May 2013
- Current Update planned for May 2020
- Important bodies (see backup for lists of members)
 - Physics Preparatory group (PPG): <u>17 people</u>
 - Organizes Symposium (May 2019) and prepares briefing book (Sept. 2019)
 - Provides scientific input to strategy based on input of community
 - European Strategy Group (ESG): Members
 - Drafts the strategy update (Jan. 2020)
 - Strategy secretariat:
 - H. Abramowics (chair), J. D'Hondt, K. Ellis, L. Rivkin
 - Coordinates the process
 - CERN Council:
 - Approves strategy in May 2020
- CERN management is responsible for implementing strategy
- Strategy also serves as important guideline for national funding agencies

European Strategy for Particle Physics

13-16 May 2019 - Granada, Spain

Strategy Secretariat

- H. Abramowicz (Chairperson)
- J. D'Hondt (ECFA Chairperson, ECFA: European Committee for Future Accelerators)
- K. Ellis (SPC Chairperson, SPC: Science Policy Committee @ CERN)
- L. Rivkin (European LDG Chairperson, LDG: Lab Directors Group)
- Contact: <u>EPPSU-Strategy-Secretariat@cern.ch</u>

Responsible for the organization of the process.

Composition of the PPG

Physics Preparatory Group (PPG), Council appointment, September 2018:

- H. Abramowicz, J. D'Hondt, K. Ellis, L. Rivkin (Strategy Secretary)
- C. Biscari (ES), Belen Gavela (ES), Beate Heinemann (DE), Krzysztof Redlich (PL)
- Stan Bentvelsen (NL), Paris Sphicas (GR), Marco Zito (FR), Antonio Zoccoli (IT)
- Gian Giudice (CERN)
- Shoji Asai and Xinchou Lou (delegates from Asia)
- Marcela Carena and Brigitte Vachon (*delegates from the Americas*)

Responsible to organize the Open Symposium and to deliver to the European Strategy Group (ESG) a Briefing Book.

Composition of the ESG

European Strategy Group (ESG) composition, adopted by Council, December 2013:

- the Strategy Secretary (acting as Chairperson),
- one representative appointed by each CERN Member State,
- one representative for each of the Laboratories participating in the major European Laboratory Directors' meeting, including its Chairperson,
- the CERN Director-General,
- the SPC Chairperson,
- the ECFA Chairperson.

Responsible to deliver a draft Strategy Update to Council.

Invited:

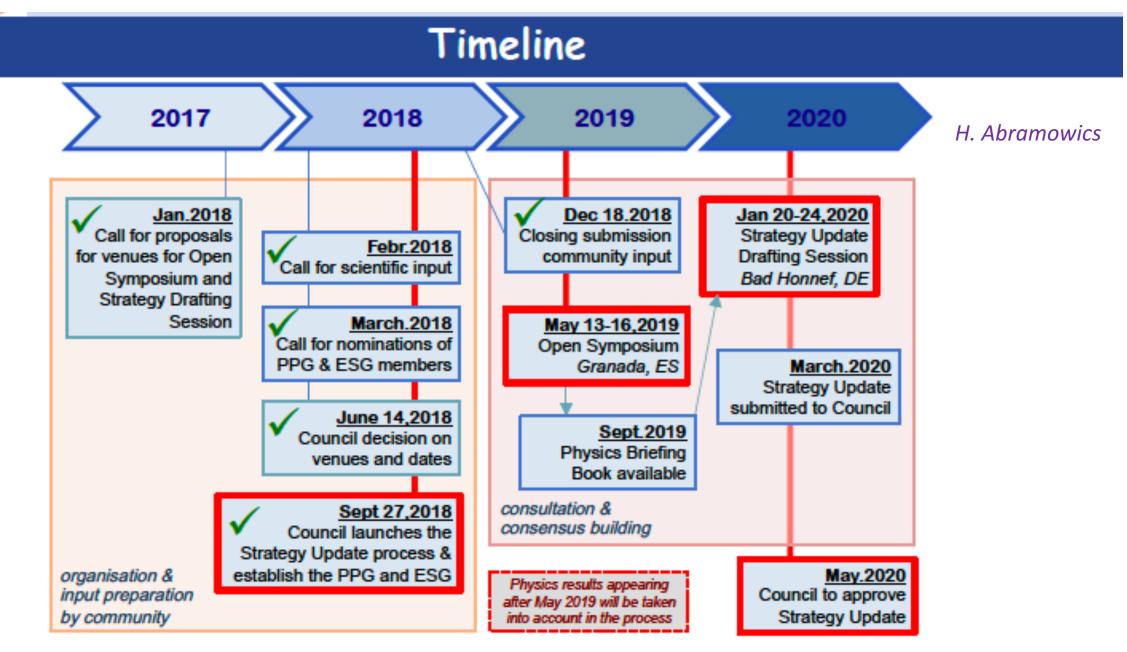
- the President of the CERN Council,
- one representative from each of the Associate Member States,
- one representative from each Observer State,
- one representative from the European Commission and JINR,
- the Chairpersons of ApPEC, FALC, ESFRI, and NuPECC,
- the members of the Physics Preparatory Group.

Composition of the ESG

European Strategy Group (ESG) composition, adopted by Council, December 2013:

- the Strategy Secretary (acting as Chairperson),
- one representative appointed by each CERN Member State,
- one representative for each of the Laboratories participating in the major European Laboratory Directors' meeting, including its Chairperson,
 For DESY: Joachim Mnich

Incl. BH


- the CERN Director-General,
- the SPC Chairperson,
- the ECFA Chairperson.

For Germany: Siggi Bethke

Responsible to deliver a draft Strategy Update to Council.

Invited:

- the President of the CERN Council,
- one representative from each of the Associate Member States,
- one representative from each Observer State,
- one representative from the European Commission and JINR,
- the Chairpersons of ApPEC, FALC, ESFRI, and NuPECC,
- the members of the Physics Preparatory Group.

Input received and Sessions in Granada

- Call for inputs issued February 28, 2018 with deadline for submission December 18, 2018
- 160 submissions received

- 1	Track ID	Granada sessions	Description	Conveners		
	1		Large experiments and projects	PPG/ESG		40
	2		National road maps	ESG		42
	7	81	Electroweak Physics (physics of the W, Z, H bosons, of the top quark, and QED)	Keith Ellis	Beate Heinemann	21
	8	B2	Flavour Physics and CP violation (quarks, charged leptons and rare processes)	Belen Gavela	Antonio Zoccoli	27
	5	B3	Dark matter and Dark Sector (accelerator and non-accelerator dark matter, dark photons, hidden sector, axions)	Marcela Carena	Shoji Asai	27
	3	B4	Accelerator Science and Technology	Caterina Biscari	Lenny Rivkin	51
	4	B5	Beyond the Standard Model at colliders (present and future)	Gian Giudice	Paris Sphicas	20
	10	B6	Strong Interactions (perturbative and non-perturbative QCD, DIS, heavy ions)	Krzysztof Redlich	Jorgen D'Hondt	31
	9	87	Neutrino Physics (accelerator and non-accelerator)	Stan Bentvelsen	Marco Zito	23
	6	B8	Instrumentation and Computing	Xinchou Lou	Brigitte Vachon	35
	11		Other (communication, outreach, strategy process, technology transfer, individual contributions,)	ESG		

- The Open Symposium aims to reach a consensus on the scientific goals of the community, based
 on the provided input, and assess the proposed projects and technologies to achieve those goals
- This is to ensure that the ESG is provided with all the necessary input to propose a realistic
 update of the Strategy decisions on strategic choices are not expected to be taken this week

8 parallel sessions in Granada: B1-B8

EPPSU 2020

Open Symposium

Parallel Sessions convened by members of the PPG

- Experts invited to summarise submitted input
- Two sessions per theme, separated by half a day
- Focus on a few fundamental questions (posted on Granada website under "Organisation of the Symposium")
- Plenty of time for discussions

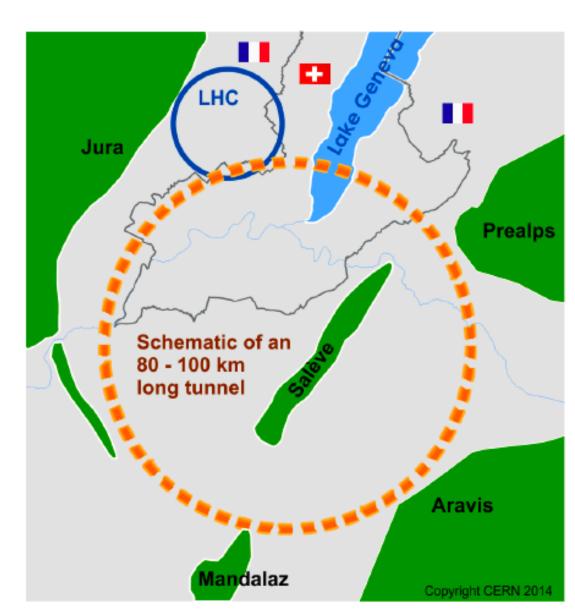
Plenary Sessions

- Two half-days to review where we stand and what is expected of the European community, also by communities outside Europe
- Full day of summaries from the parallel session discussions.

=> Webcast of Thursday Summary talks https://webcast.web.cern.ch/event/596

 End product of the Symposium → Briefing Book based on the summaries, compiled by the PPG, assisted by scientific secretaries who will take note of the discussions in each session

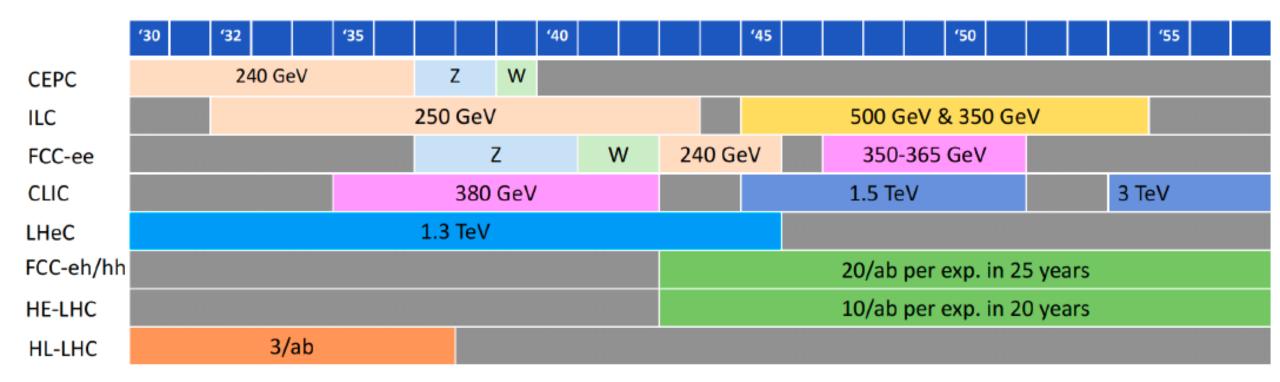

Accelerators


Big Questions

In particular for the Accelerator Science and Technology

- What is the best implementation for a Higgs factory? Choice and challenges for accelerator technology: linear vs. circular?
- Path towards the highest energies: how to achieve the ultimate performance (including new acceleration techniques)?
- How to achieve proper complementarity for the high intensity frontier vs. the high-energy frontier?
- Energy management in the age of high-power accelerators?

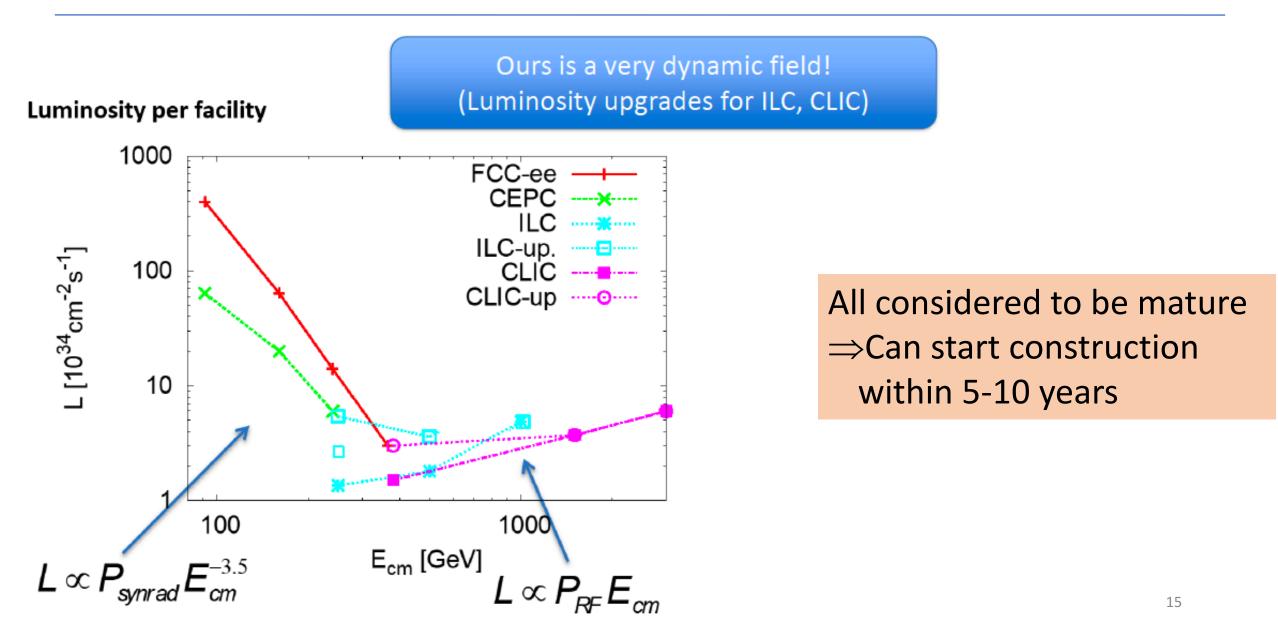
Q1: What is the best implementation for a Higgs factory? Choice and challenges for accelerator technology: linear vs. circular?

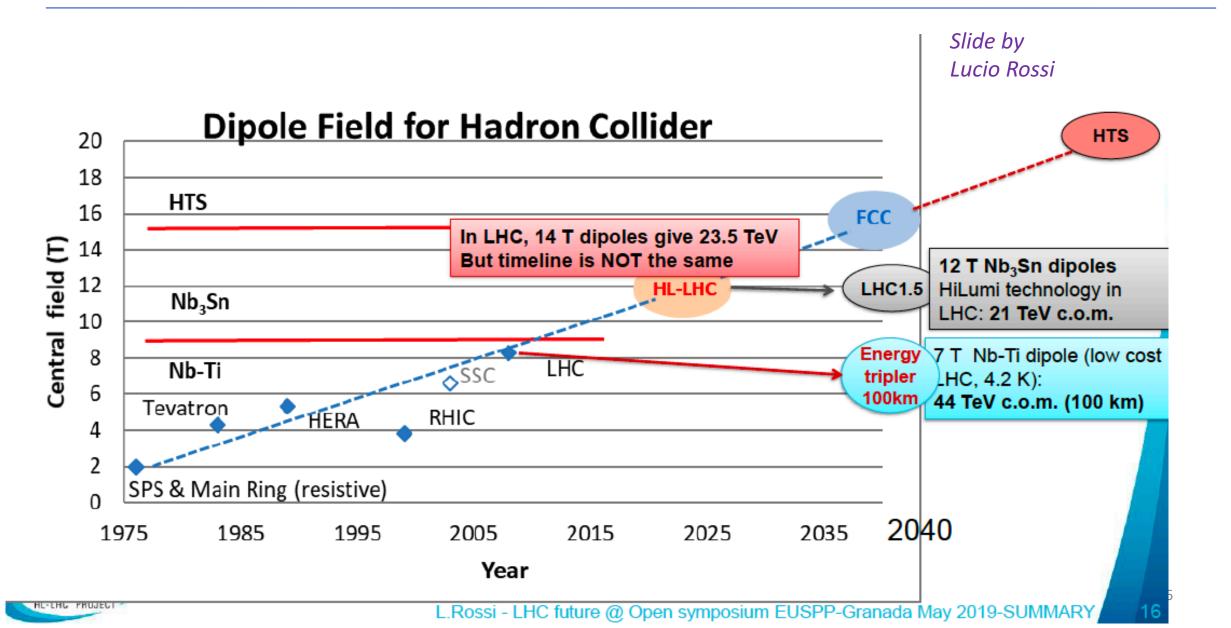


Collider Schedules: starting from T₀

	T ₀	+5		+10		+15		+20		+26
ILC	0.5/ab 250 GeV		1.5/a 250 G			1.0/ab 500 GeV	0.2/ab 2m _{top}	3/ab 500 GeV		
CEPC	5.6/ 240 (16/ab M _z	2.6 /ab 2M _W						SppC =>
CLIC		.0/ab 0 GeV				2.5/ab 1.5 TeV		5.0/	ab => unti 3.0 TeV	l +28
FCC	150/ab ee, M _z	10/ab ee, 2M _w	/ab 40 GeV			1.7/ab e, 2m _{top}				hh,eh =>
LHeC	0.06/ab		0.2/a	b		0.72/ab				
HE- LHC			10/at	o per ex	periment	in 20y				
FCC eh/hh				20/a	ab per exp	periment in 25y				

NB: number of seconds/year differs: ILC 1.6x107, FCC-ee & CLIC: 1.2x107, CEPC: 1.3x107


Schedules: by calendar year


Project	Туре	Energy [TeV]	Int. Lumi. [a ⁻¹]	Oper. Time [y]	Power [MW]	Cost
ILC	ee	0.25	2	11	129 (upgr. 150-200)	4.8-5.3 GILCU + upgrade
		0.5	4	10	163 (204)	7.98 GILCU
		1.0			300	?
CLIC	ee	0.38	1	8	168	5.9 GCHF
		1.5	2.5	7	(370)	+5.1 GCHF
		3	5	8	(590)	+7.3 GCHF
CEPC	ee	0.091+0.16	16+2.6		149	5 G\$
		0.24	5.6	7	266	-
FCC-ee	ee	0.091+0.16	150+10	4+1	259	10.5 GCHF
		0.24	5	3	282	-
		0.365 (+0.35)	1.5 (+0.2)	4 (+1)	340	+1.1 GCHF
LHeC	ер	60 / 7000	1	12	(+100)	1.75 GCHF
FCC-hh	рр	100	30	25	580 (550)	17 GCHF (+7 GCHF)
HE-LHC	рр	27	20	20		7.2 GCHF

LHC: 150 MW

ee Colliders

pp Colliders

Technical Challenges in Energy-Frontier Colliders proposed

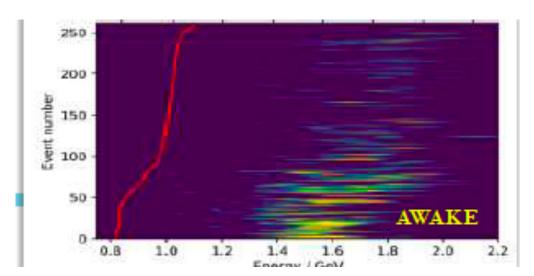
		Ref.	E (CM) [TeV]	Lumino sity [1E34]	AC- Power [MW]	Cost-estimate Value* [Billion]	B ITI	E: [MV/m] (GHz)	Major Challenges in Technology
С	FCC- hh	CDR	~ 100	< 30	580	24 or +17 (aft. ee) [BCHF]	~ 16		High-field SC magnet (SCM) - <u>Nb3Sn</u> : Jc and Mechanical stress Energy management
C hh	SPPC	(to be filled)	75 – 120	TBD	TBD	TBD	12 - 24		High-field SCM - <u>IBS</u> : Jcc and mech. stress Energy management
C	FCC- ee	CDR	0.18 - 0.37	460 – 31	260 – 350	10.5 +1.1 [BCHF]		10 – 20 (0.4 - 0.8)	High-Q SRF cavity at < GHz, Nb Thin-film Coating Synchrotron Radiation constraint Energy efficiency (RF efficiency)
C ==	CEPC	CDR	0.046 - 0.24 (0.37)	32~ 5	150 – 270	5 [B\$]		20 – (40) (0.65)	High-Q SRF cavity at < GHz, LG Nb-bulk/Thin- film Synchrotron Radiation constraint High-precision Low-field magnet
L	ILC	TDR update	0.25 (-1)	1.35 (- 4.9)	129 (- 300)	4.8- 5.3 (for 0.25 TeV) [BILCU]		31.5 – (45) (1.3)	High-G and high-Q SRF cavity at GHz, Nb-bulk Higher-G for future upgrade Nano-beam stability, e+ source, beam dump
C ee	CLIC	CDR	0.38 (- 3)	1.5 (- 6)	160 (- 580)	5.9 (for 0.38 TeV) [BCHF]		72 – 100 (12)	Large-scale production of Acc. Structure Two-beam acceleration in a prototype scale Precise alignment and stabilization. timing
	A. Yamamoto	190512b						1.6 10.1	26

A. Yamamoto, 190513b

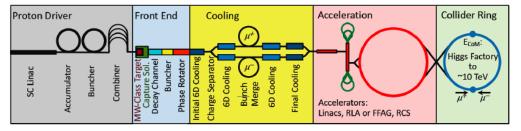
*Cost estimates are commonly for "Value" (material) only.

ee and pp colliders:

Personal (A. Yamamoto) View on Relative Timelines


Timeline	~ 5	~	10 ~ 15	~ 20	~ 25	~ 30	~ 35
Lepton Collid	ders						
SRF-LC/CC	Proto/pre- series	Const	ruction	Oper	ation	Upgi	rade
NRF-LC	Proto/pre-ser	ies <mark>Co</mark>	nstruction	Oper	ation	Upgi	rade
Hadron Colli	der (CC)						
8~(11)T NbTi /(Nb3Sn)	Proto/pre- series	Const	ruction		Operatio	on	Upgrade
12~14T Nb ₃ Sn	Short-model	R&D	Proto/Pre-serie	s Cons	truction	Opera	ation
14~16T <mark>Nb₃Sn</mark>	Short-r	nodel R8	KD F	Prototype/Pre	e-series	Constructio	on
Note: LHC	Cexperience: Nb	o ti (10 t) R	&D started in 1980	0's> (8.3 T) Pr	oduction starte	ed in late 1990's	, in ~ 15 years

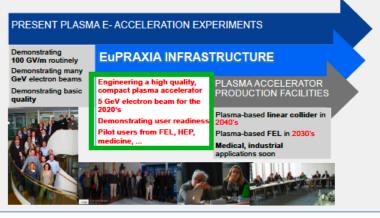
pp collider schedule depends critically on progress in high field magnet R&D


Further (Far?) Future

Very interesting R&D projects

- Muon collider:
 - from proton beam (rcooling success: MICE)
 - from e+e- production (LEMMA)
- Plasma wakefield acceleration:
 - High gradients possible: ~100 GV/m
 - R&D progressing well but many challenges

Muon-based technology represents a unique opportunity for the future of high energy physics research: the multi-TeV energy domain exploration.



EuPRAXIA

Horizon 2020 EU design study funded in 2015. Deliverable: Conceptual Design Report by Oct 2019

The EuPRAXIA Strategy for Accelerator Innovation: The accelerator and application demonstration facility EuPRAXIA is the required intermediate step between proof of principle and production facility.

Views from Americas and Asia

Young-Kee Kim for the Americas

Conclusions: Towards 2020 ESG

- Support of Americas' current plan
 - Importance of current high-priority projects such as HL-LHC, DUNE, ...
- Beyond mid-2020's
 - Scientific drivers of the current plans are still valid
 - More capable facilities and broader programs
 - R&D of enabling technologies for future (accelerator, detector and computing)
- · Support of facilities and activities outside of Europe
 - DUNE/LBNF, SNOLAB, CMB-S4, EIC,
 - A statement in the ESG document plays a significant role for success of facilities outside of Europe that serves the European / worldwide community
- The American community
 - will continue with its strong partnership with Europe
 - would like to see positive steps toward a new collider: an e+e- collider might be the first one to be realized: O(1000) American community

Young-Kee Kim, University of Chicago

31

Geoffrey Taylor for Asia

Asian (and personal) View

- Diversity is Critical to thrive in all environments, including HEP.
 Big and small facilities/experiments, at various stages of development and operation
- Push for e+e- colliders, both Linear and Circular, as soon as possible.
 - Linear Collider: ILC
 - 1 Collision point
 - Circular Collider: CepC
 - 2 Collision points
- Push for FCC tunnel to be ready at completion of HL-LHC
 - Stage the energy frontier with best option magnets available for early 2040's
 - ?? Default: ~8T LHC magnets optimised for price
 - Minimum energy: >50TeV
 - Magnet upgrade foreseen.
 - ep and ion-ion options available
 - 4 collision points
 - Upgrade path to higher energy after 20 years operation?

Geoffrey Taylor "Perspective on the European Strategy from Asia", EPPSU2019, Granada

See A. Yamamoto, L. Rossi, V. Shiltzev talks this symposium

Gigantic amount of information reviewed at Symposium in Granada

- Many excellent talks and a lot of time for discussion
- Input of LHC experiments via Yellow Reports was critical!
- Discussions were constructive and focused on scientific aspects
 - Finances and schedule also touched on though
 - Some complaints about existence of parallel sessions
- Discussions in Granada form basis of "Briefing Book"
- In some cases some additional information being collected
- Release by PPG planned for Sept. 10th

Discussions points during Granada on may topics, e.g.

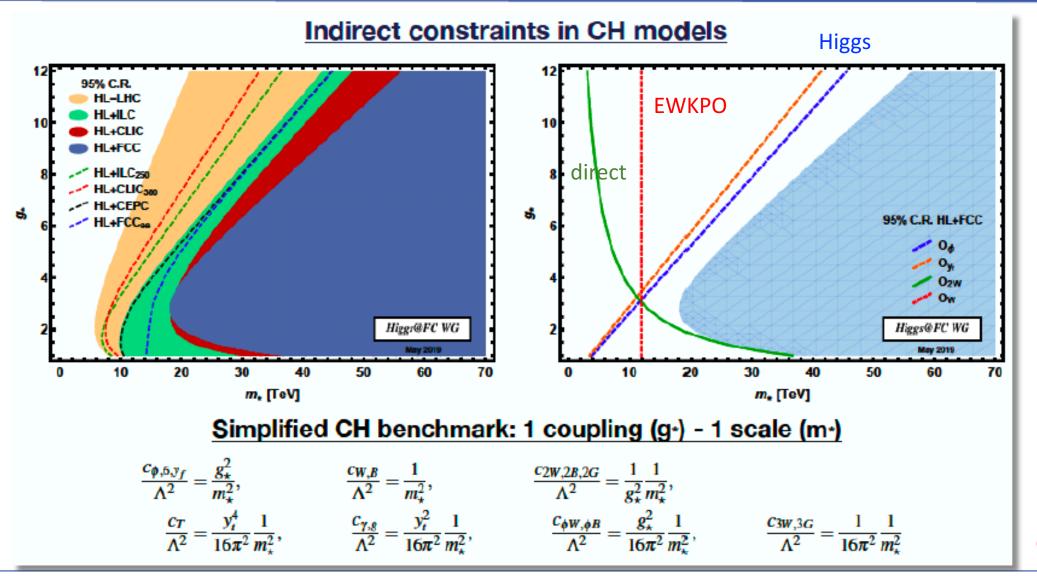
- Is it critical to have ee collider next?
- Do we want pp collider in not too distant future? Even maybe in 100km tunnel with NbTi magnets to start with?
- Should CERN invest more in astrophysics?
- How to ensure support of theory for precision calculations?
- How to collaborate better with industry for detector development?
- •

European Strategy Group will continue these discussions

- Regular meetings of ESG are going on already in parallel to PPG work
- Contact your national representative in case of thoughts/worries etc.
- Final drafting session in Jan. 2020

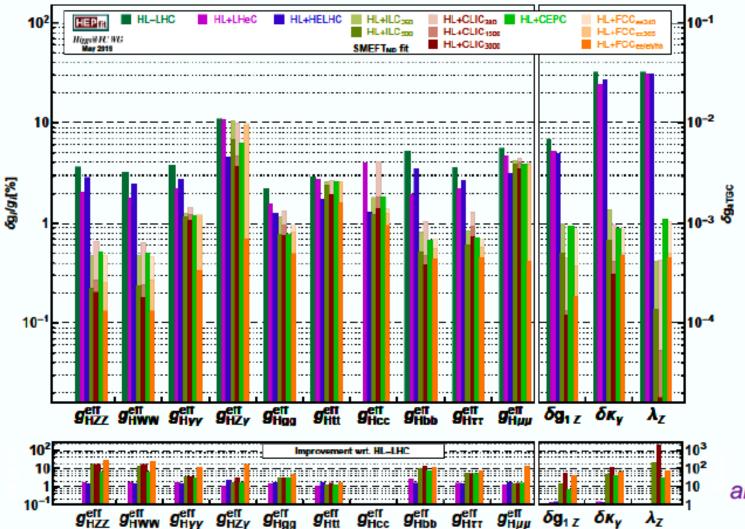
Backup Slides

Answers to Big Questions


- 1. How well can the Higgs boson couplings to fermions, gauge bosons and to itself be probed at current and future colliders?
 - Current colliders: ~1-3% for 3rd gen fermions and gauge bosons, 4% to μ, 50% to itself
 - Future colliders: factors of ~2-10 better (!) + $\kappa_c \sim 2\%$ + model-independent $\sigma(ZH)$
- 2. How do precision electroweak observables inform us about the Higgs boson properties and/or BSM physics?
 - Important to make sure precision H measurements (δg_Z) not limited by these
 - Themselves probe new physics in interesting and complementary way
- 3. What progress is needed in theoretical developments in QCD and EWK to fully capitalize on the experimental data?
 - A lot of progress needed! Plan exists but lots of work/people needed!!
 - In some cases, new ideas are needed => and unclear when/if new ideas come
- 4. What is the best path towards measuring the Higgs potential?
 - Di-Higgs and single Higgs production are sensitive to derivative $d^3V/d^3\phi$ near minimum
 - Seems conceivable to determine it with sufficient precision to test 1st order EWΦT

The Big Questions (BQs)

The four big questions for BSM (@colliders):


- To what extent can we tell whether the Higgs is fundamental or composite?
 - EWSB/NewReson, SUSY
- Are there new interactions or new particles around or above the electroweak scale?
 - EWSB/NewReson, SUSY, Ext-H/FlavorDyn, DM, FIPs
- What cases of thermal relic WIMPs are still unprobed and can be fully covered by future collider searches?
 - DM, FIPs, SUSY
- To what extent can current or future accelerators probe feebly interacting sectors?
 - FIPs, SUSY

Indirect constraints on Composite Higgs

J. de Blas

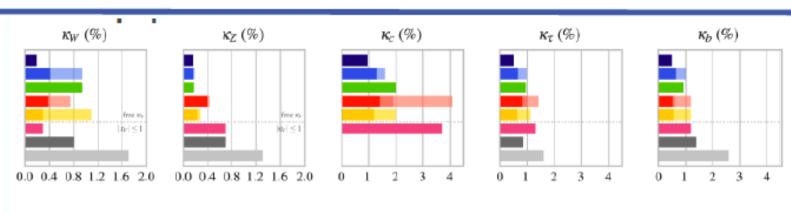
Comparison of Colliders: EFT

Effective Higgs couplings

- Constraints approach 0.1% precision for gauge bosons
- Major improvement w.r.t. HL-LHC for many colliders for fermions

Trilinear gauge couplings

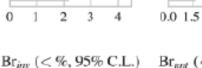
- Will achieve precision 10⁻³-10⁻⁴
- About 2-3 orders of magnitude better than LEP

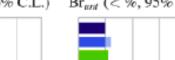


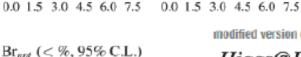
Comparison of Colliders: kappa-framework

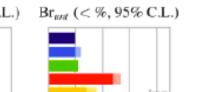
Some observations:

- HL-LHC achieves precision of ~1-3% in most cases
 - In some cases model-dependent
- Proposed e^+e^- and e_p colliders improve w.r.t. HL-LHC by factors of ~2 to 10
- Initial stages of e^+e^- colliders have comparable sensitivities (within factors of 2)
- ee colliders constrain $BR \rightarrow$ untagged w/o assumptions
- Access to κ_c at ee and eh

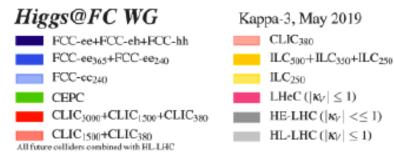

arXiv:1905.03764




Kr (%)


Kg (%) 2 2

0.0 0.6 1.2 1.8 2.4 3.0



 $\kappa_{\gamma}(\%)$

modified version (x-scale) of the olot in the report for illustration purposes

κµ (%)

12

16

 $K_{Z\gamma}(\%)$

12 - 16

of "largely" improved H couplings (EFT)

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
	CLIC380	9	6	4	7
Initial	FCC-ee240	10	8	3	9
run	CEPC	10	8	3	10
	ILC250	10	7	3	11
	FCC-ee365	10	8	6	15
2 nd /3rd	CLIC1500	10	7	7	17
Run ee	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

13 quantities in total NB: number of seconds/year differs: ILC 1.6x10⁷, FCC-ee & CLIC: 1.2x10⁷, CEPC: 1.3x10⁷

Theory uncertainties for EWK physics

ILC and FCC-ee have great potential for high-precision Z, WW, and Higgs physics

Can theory provide the necessary precision?

↔ Optimists: "Yes. No show-stoppers seen, great progress can be anticipated."

Sceptics: "Enormous challenge! Conceptual progress difficult to extrapolate."

Some warnings:

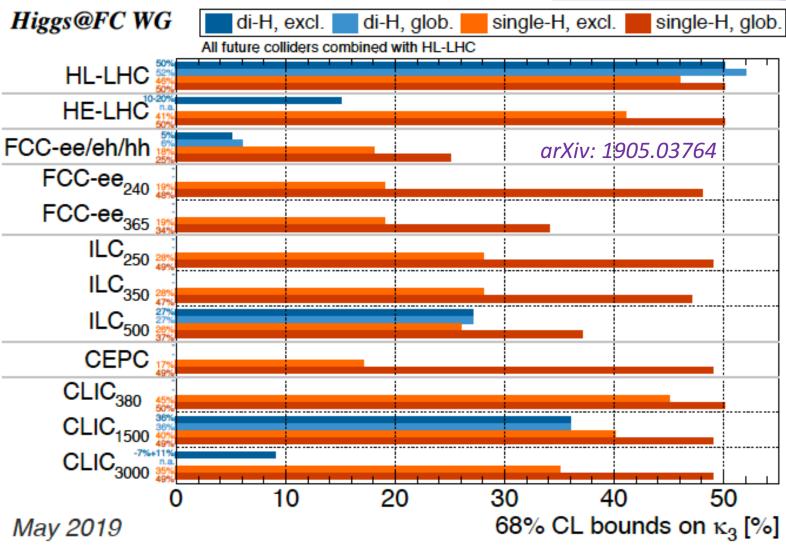
- · Produce solid and conservative uncertainty estimates!
- · Always combine experimental and theoretical uncertainties!
- Employ different theoretical strategies and exp. analyses as much as possible!
 (e.g. for α_s, Δα_{had})

The greatest challenges: (+ many more very demanding tasks)

- Z: ♦ full EW 2-loop calculation for off-shell e⁺e⁻ → f f̄ + theoretically sound concept of pseudo-obervables
 ♦ massive 3-loop calculations for 1 → 2 decays and μ decay
- WW: \diamond NNLO threshold EFT calculation for $e^+e^- \rightarrow WW$
- Higgs:

 full EW 2-loop calculation for off-shell e⁺e⁻ → ZH
 massless 4-/5-loop QCD calculations for 1 → 2 decays
- ↔ Certainly takes another generation of bright minds!

S. Dittmaier


Sensitivity to λ : via single-H and di-H production

Di-Higgs:

- HL-LHC: ~50% or better?
- Improved by HE-LHC (~15%), ILC₅₀₀ (~27%), CLIC₁₅₀₀ (~36%)
- Precisely by CLIC₃₀₀₀ (~9%), FCC-hh (~5%),
- Robust w.r.t other operators

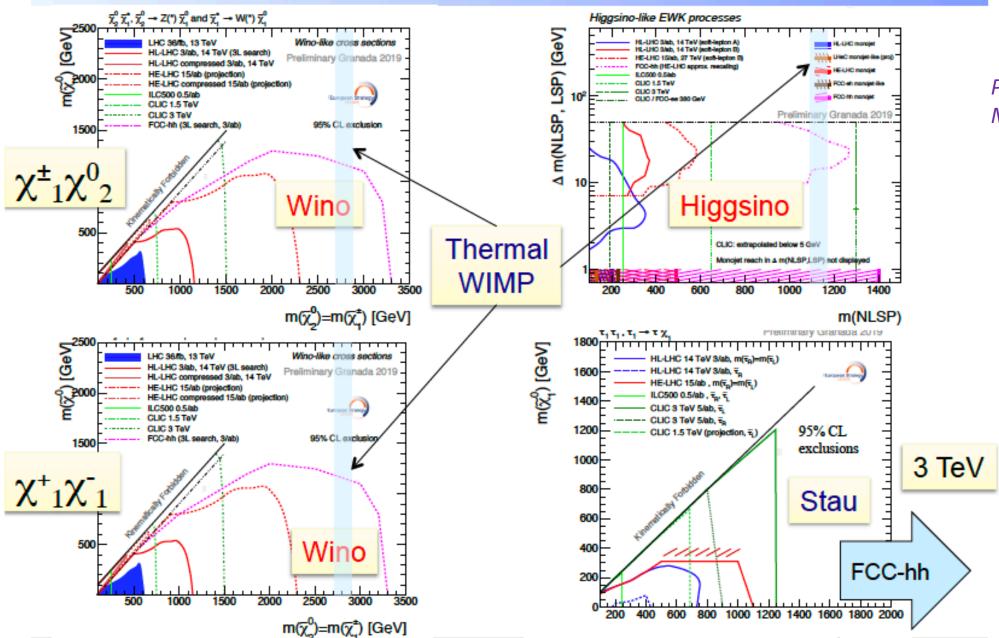
Single-Higgs:

- Global analysis: FCC-ee365 and ILC500 sensitive to ~35% when combined with HL-LHC
 - ~21% if FCC-ee has 4 detectors
- Exclusive analysis: too sensitive to other new physics to draw conclusion

Elisabeth Petit

Beyond the Standard Model (at colliders)

Open Symposium on the Update of European Strategy for Particle Physics


Gian Giudice and Paris Sphicas For the BSM group J. Alcaraz, C. Doglioni, G. Lanfranchi, M. D'Onofrio, M. McCullough, G. Perez, P. Roloff, V. Sanz, A. Weiler, A. Wulzer

May 16, 2019

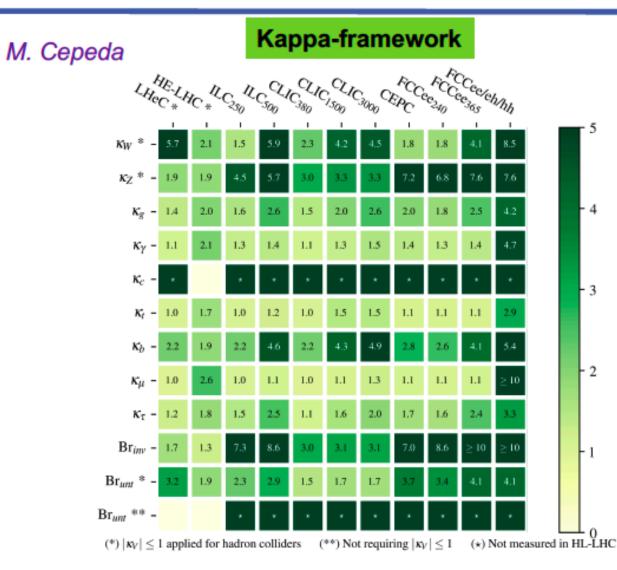
Introduction

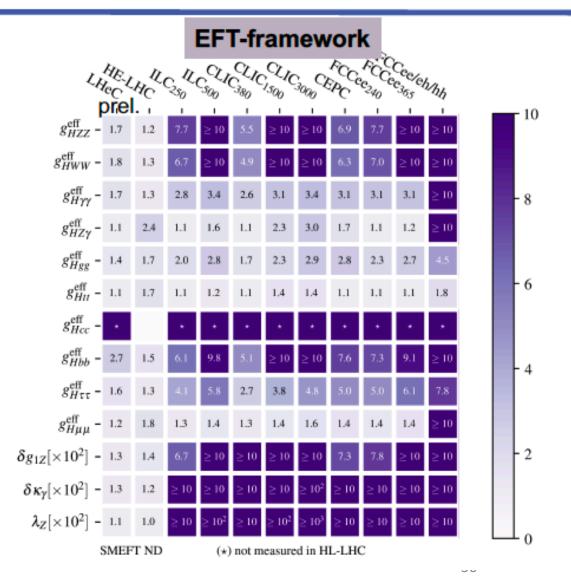
- Some cautionary comments
- The big questions (& some smaller questions)
- The [partial] answers to the Big Questions
 - And some answers to the Smaller Questions
- Outlook

SUSY: EWK sector

Plots by M. D'Onofrio

33

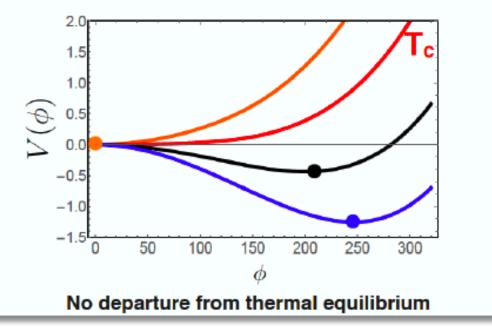

The Yellow Reports released end of 2018/early 2019 served as foundation for all discussions

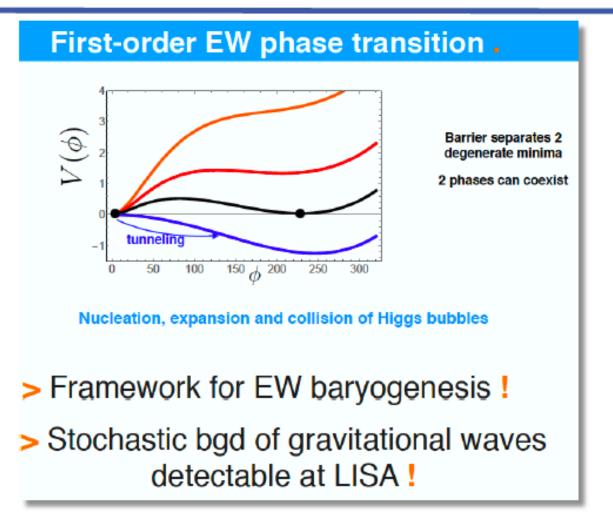

- The huge effort in putting these together was very much appreciated!
- All new colliders are measured w.r.t. HL-LHC, i.e. the question is "what do they add?"

Many other interesting talks

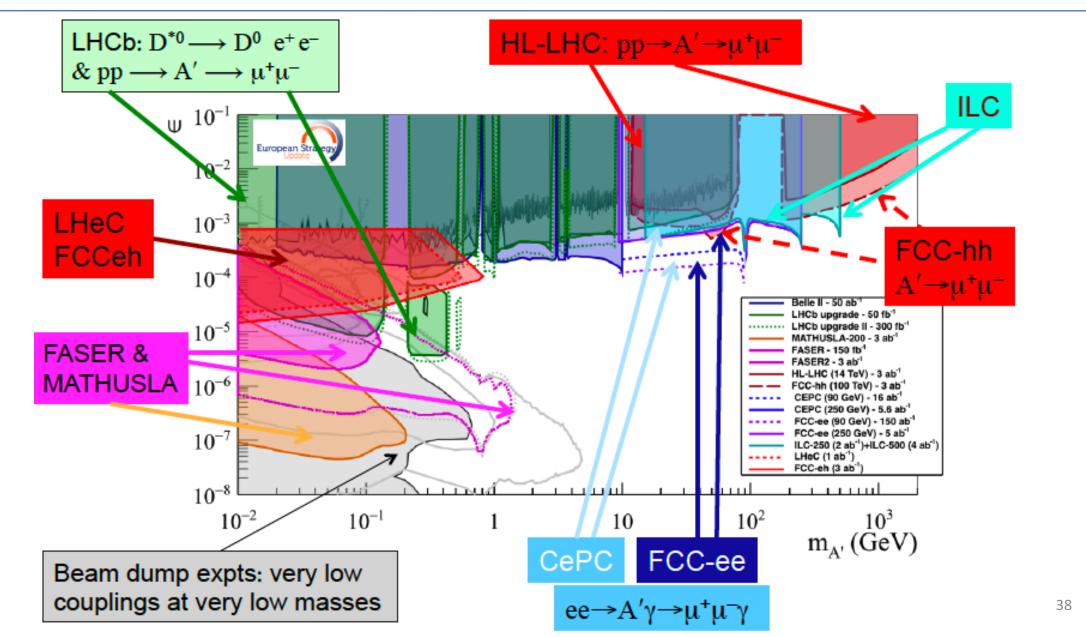
- Introductory talks
 - Current European Strategy (F. Gianotti)
 - Accelerators: past, present and (far) future
 - Technologies: instrumentation and computing
- Parallel sessions and summary talks of the 8 topics
- Other communities
 - Astrophysics (APPEC) and nuclear physics (NUPPEC)
 - American and Asian views on EPPSU

Improvements w.r.t. HL-LHC



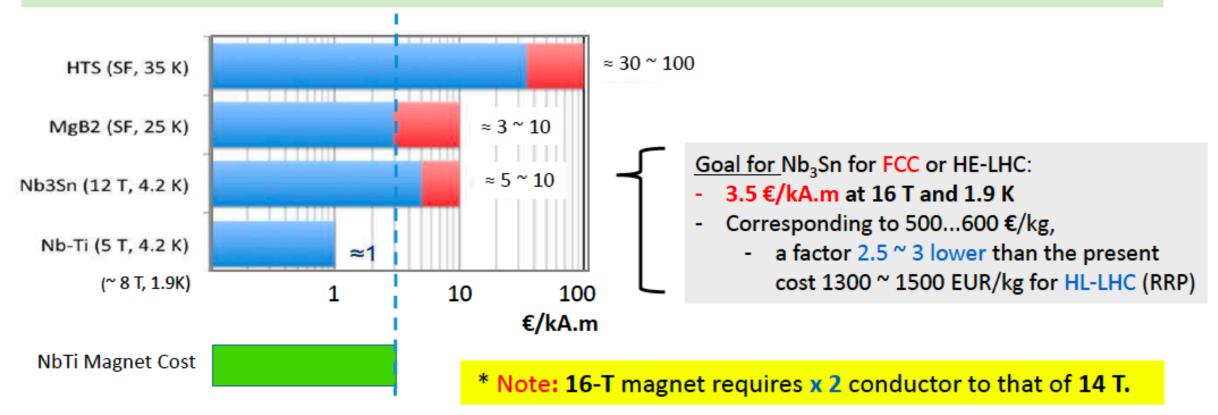


Electroweak potential


HEATING UP THE STANDARD MODEL .

EW sym. restored at T≥130 GeV through a smooth crossover

Feebly Interacting Particles (FIPs)



s.c. magnet technology

- Nb₃Sn superconducting magnet technology for hadron colliders, still requires step-bystep development to reach 14, 15, and 16 T.
- It would require the following time-line (in my personal view):
 - Nb₃Sn, 12~14 T: 5~10 years for short-model R&D, and the following 5~10 years for prototype/pre-series with industry. It will result in 10 – 20 yrs for the construction to start,
 - Nb₃Sn, 14~16 T: 10-15 years for short-model R&D, and the following 10 ~ 15 years for protype/pre-series with industry. It will result in 20 30 yrs for the construction to start, (consistently to the FCC-integral time line).
 - NbTi , 8~9 T: proven by LHC and Nb₃Sn, 10 ~ 11 T being demonstrated. It may be feasible for the construction to begin in > ~ 5 years.
- Continuing R&D effort for high-field magnet, present to future, should be critically important, to realize highest energy frontier hadron accelerators in future.

Relative Cost Comparison for High-field SC and Magnet

- An approach for cost consideration:
 - Superconductor cost to be 30 % of the total cost for the LHC NbTi dipole magnet assembled.
 - It gives a general guideline for acceptable superconductor cost.
 - The currently available HTS cost is still too far, exept for Iron-based-SC (IBS) potential

Interpretation of Higgs Measurements

SMEFT and κ

$$(\boldsymbol{\sigma} \cdot \mathbf{BR})(i \to \mathbf{H} \to f) = \frac{\boldsymbol{\sigma}_i^{SM} \kappa_i^2 \cdot \Gamma_f^{SM} \kappa_f^2}{\Gamma_H^{SM} \kappa_H^2} \to \mu_i^f \equiv \frac{\boldsymbol{\sigma} \cdot \mathbf{BR}}{\boldsymbol{\sigma}_{SM} \cdot \mathbf{BR}_{SM}} = \frac{\kappa_i^2 \cdot \kappa_f^2}{\kappa_H^2}$$

<u>κ-framework:</u> phenomenological parameterization of NP in <u>single</u> Higgs processes but not adequate for a systematic exploration/interpretation of BSM deformations in SM measurements Include BSM in kappa via : $\Gamma_{H} = \frac{\Gamma_{H}^{\text{SM}} \cdot \kappa_{H}^{2}}{1 - (BR_{inv} + BR_{unt})}$

Pros

-Compact parameterization of NP in single Higgs processes

-Does not require any BSM calculation per se

-Info easily applicable to several interesting NP scenarios (e.g. CH, MSSM)

-Theory constraints (e.g. gauge invariance, custodial) not implicit Cons

Not usable beyond <u>single</u> Higgs processes

-Does not distinguish the source of NP (interpreted only as mod. of SM-like H couplings)

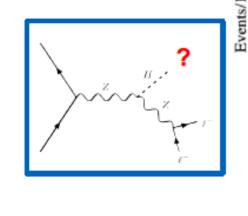
-Only for total rates, no kinematics (Energy, angular dependence), no polarization

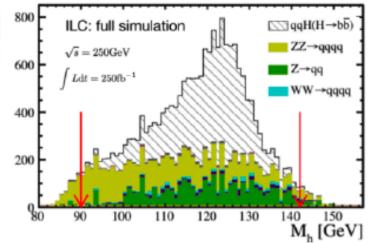
-Theory constraints (e.g. gauge invariance, custodial) not implicit

For heavy New Physics (NP) the formalism of Effective Field Theories (EFT) provides a suitable framework for systematic studies of indirect sensitivity to BSM effects in EW/Higgs/Top/Flavour/...

J. De Blas

Higgs width and/or untagged decays

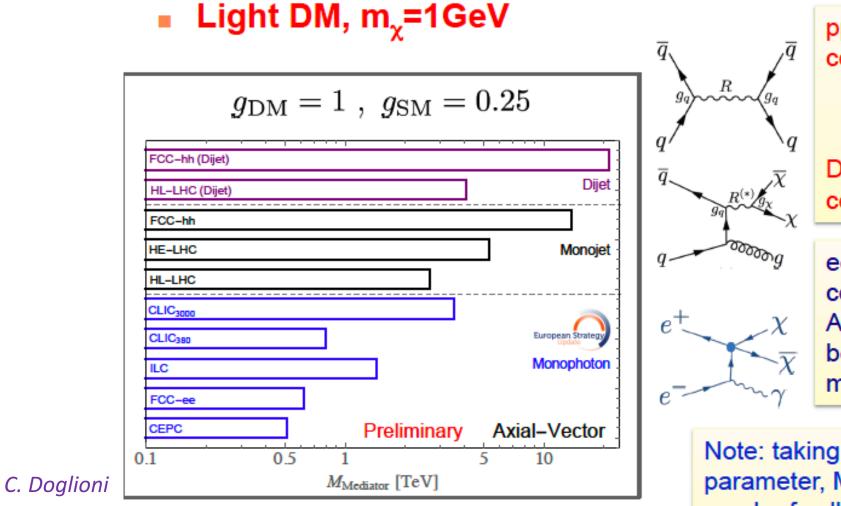

Unique feature of lepton-lepton colliders:


- Detecting the Higgs boson without seeing decay: "recoil method"
- Measure ZH cross section with high precision without assumptions on decay
- Often interpreted as quasi-direct measurement of width

$$\frac{\sigma(e^+e^- \to ZH)}{\mathrm{BR}(H \to ZZ^*)} = \frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)/\Gamma_H} \simeq \left[\frac{\sigma(e^+e^- \to ZH)}{\Gamma(H \to ZZ^*)}\right]_{\mathrm{SM}} \times \Gamma_H$$

In kappa-framework: $\Gamma_H = \frac{\Gamma_H^{SM} \cdot \kappa_H^2}{1 - (BR_{inv} + BR_{unt})}$

=> Will probe width with 1-2% precision



Collider	$\delta \Gamma_H$ (%) from Ref.	Extraction technique standalone result	δΓ _Η (%) kappa-3 fit
ILC250	2.4	EFT fit [3]	2.4
ILC500	1.6	EFT fit [3, 11]	1.1
CLIC ₃₅₀	4.7	κ-framework [85]	2.6
CLIC ₁₅₀₀	2.6	κ-framework [85]	1.7
CLIC ₃₀₀₀	2.5	κ-framework [85]	1.6
CEPC	3.1	$\sigma(ZH, v\bar{v}H), BR(H \rightarrow Z, b\bar{b}, WW)$ [90]	1.8
FCC-ee ₂₄₀	2.7	κ-framework [1]	1.9
FCC-ee ₃₆₅	1.3	κ-framework [1]	1.2

arXiv:1905.03764

Simplified Models: axial vector

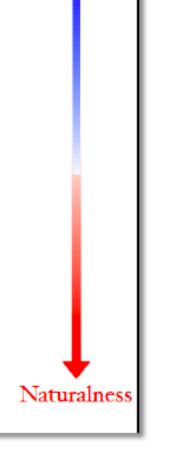
pp: assumes mediator couplings to quarks only. 750 GeV, HL-LHC 1.5 TeV, HE-LHC 3.9 TeV for FCC-hh Dependence on couplings!

ee: assumes mediator couplings to leptons only. Also in EFT limit, so can be easily rescaled for modified couplings.

Note: taking EFT scale as free parameter, M_{DM} reach ~kinematic reach of collider.

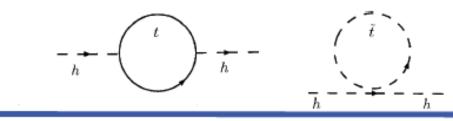
Significant model dependence. UV models may have comparable quark and lepton couplings. If both present, can also use dilepton resonances.

Simplicity vs Naturalness


The two Chief Systems

I. The SM is valid up to $\Lambda_{UV} \gg TeV$

- B, L and Flavor: beautifully in accord with observation
- Higgs mass & C.C. hierarchy point beyond naturalness
 - multiverse
 - cosmological relaxation, Nnaturalness, ...
 - failure of EFT ideology (UV/IR connection)


II. Naturalizing New Physics appears at $\Lambda_{UV} \sim 1 \,{
m TeV}$

• Constraints on B, L, Flavor & CP met by clever model building

Simplicity

Measuring Naturalness

Hierarchy Paradox

unavoidable and global perspective on energy frontier exploration

In any model with calculable m_h :

$$m_h^2 = \sum_i \Delta m_i^2$$

fine tuning $\epsilon \equiv \frac{m_h^2|_{exp}}{\Delta m_s^2|_{max}}$

offers a measure of where Nature stands in the negotiation between Simplicity and Naturalness

Measures of fine tuning

- Direct searches: depends on top partner constraints in model (e.g. SUSY varieties, composite H, twin H)
 - LHC now: $\epsilon \lesssim 10^{-2} 1$
 - **FCC-hh:** $\epsilon \leq 10^{-4} 10^{-2}$ (if nothing)
- Higgs observables: $\epsilon \sim \delta g/g$
- Electroweak precision: $\epsilon \sim 10^2 \times \delta S/S$

Higgs and EWK precision observables can test naturalness beyond direct searches

What else do we learn from Higgs?

Question	κ_V	κ_3	κ_{g}	κ_{γ}	λ_{hhh}	σ_{hZ}	$\mathrm{BR}_{\mathrm{inv}}$	$\mathrm{BR}_{\mathrm{und}}$	$\kappa_\ell \ \mu_{4f}$	$\mathrm{BR}_{\tau\mu}$	Γ_h
Is h Alone?	+	+			+	+			+		+
Is h elementary?	+	+	+	+		+					
Why $m_h^2 \ll m_{\rm Pl}^2$?	+	+					+	+	+		+
1st order EWPT?			+	+	+	+			+		
CPV?		+(CP)									
Light singlets?							+	+	+ +		+
Flavor puzzles?		+							+	+	

Many problems of particle physics today relate to Higgs observables