Higgs and EWSB @ FCC-hh

Higgs @ FCC-hh

Clement Helsens, CERN-EP

Quantum Universe, DESY

Expectation from hadron future collider

Guaranteed deliverables

Study Higgs and top-quark properties and exploration of EWSB phenomena with unmatchable precision and sensitivity

Exploration potential (New machines are build to make discoveries!)

- Mass reach enhanced by factor $\sqrt{s}/14$ TeV (5-7 at 100TeV)
 - Statistics enhanced by several orders of magnitude for possible BSM seen at HL-LHC or just above thres.
- Benefit from both direct (large Q^2) and indirect precision probes

Could provide firm answers to questions like

- Is the SM dynamics all there at the TeV scale?
- Is there a TeV-Scale solution the hierarchy problem?
- Is DM a thermal WIMPS?
- Was the cosmological EW phase transition 1st order? Cross-over?
- Could baryogenesis have taken place during EW phase transition?

The FCC-hh

FCC-hh

- Need a new 100km tunnel
- Need 16 Telsa magnets to reach 100TeV in 100km
 - With more R&D 24 Tesla HTS?
- Baseline Luminosity (10y)
 - 5 10³⁴ cm⁻² s⁻¹ (HL-LHC) <μ>200
- Ultimate luminosity (15y)
 - 30 10³⁴ cm⁻² s⁻¹ <µ>1000
- 2.4MW sync rad/ring x300 HL-LHC
- Considering 30ab⁻¹ for the study

Environment and detector requirements

@100TeV FCC-hh

- From 14 to 100TeV pp cross-section only grows by a factor 2
- 10 times more fluence compared with HL-LHC (x100 wrt to LHC)
 - Need radiation hard detectors
- Increase of radiation level mostly driven by the jump in instantaneous luminosity
- More forward physics -> larger acceptance
 - Precision momentum spectroscopy and energy measurements up to $|\eta|$ < 4
 - Tracking and calorimetry up to $|\eta| < 6$ (at 10cm of beam line at 18m of IP)
- More energetic particles
 - Colored hadronic resonances up to 40TeV -> Full containment of jets up to 20TeV
 - Resonances decaying to boosted objects (top, bosons) -> need very high granularity to resolve such sub-structure

FCC-hh detector

Why measuring Higgs @FCC-hh?

κ_γ κ_w

κ_z

κ_g κ_t

κ_b

κ_τ κ_μ

κ_{Zγ}

- Higgs precision measurements are part of the guaranteed deliverables
- FCC-hh provides unique and complementary measurements to e⁺e⁻ colliders:
 - Higgs self-couplings
 - Top Yukawa
 - Rare decays (BR(μμ), BR(Ζγ), ...) measurements will be statistically limited at FCC-ee

HL-LHC

Vs = 1	14 TeV, 3000 fb ⁻¹ p	er expe	riment	
Total Statistical Experimental	ATLAS and CMS HL-LHC Projection			
— Theory	Und	ertainty [%]	
2% 4%	Tot	Stat Exp	Th	
<u> </u>	1.8	0.8 1.0	1.3	
Z_	1.7	0.8 0.7	1.3	
 _	1.5	0.7 0.6	1.2	
 .	2.5	0.9 0.8	2.1	
]	3.4	0.9 1.1	3.1	
	3.7	1.3 1.3	3.2	
=_	1.9	0.9 0.8	1.5	
	4.3	3.8 1.0	1.7	
	9.8	7.2 1.7	6.4	
0.02 0.04 0.06	0.08 0.1	0.12	0.14	
	Expected u	ncerta	ainty	

FCC-ee

δm _H (MeV)	6
δΓ _H / Γ _H (%)	1.6
δg _{Hb} / g _{Hb} (%)	o.68
δg _{HW} /g _{HW} (%)	0.47
δg _{Hτ} / g _{Hτ} (%)	0.80
δg _{Hγ} / g _{Hγ} (%)	3.8
δg _{Hμ} / g _{Hμ} (%)	8.6
δg _{HZ} /g _{Hz} (%)	0.22
δg _{Hc} / g _{Hc} (%)	1.2
δg _{Hg} /g _{Hg} (%)	1.0
Br _{invis} (%) _{95%CL}	< 0.25
BR _{EXO} (%) _{95%CL}	< 1.1

SM Higgs event rates @ 100TeV

	ggF	VBF	WH	ZH	ttH	нн
N ₁₀₀	2.4x10 ¹⁰	2.1x10 ⁹	4.6x10 ⁸	3.3x10 ⁸	9.6x10 ⁸	3.6x10 ⁷
N ₁₀₀ /N ₁₄	180	170	100	110	530	390

- Huge production rates
 - Access very rare decay modes
 - Push to %-level Higgs self-couplings measurements
- Large dynamic range for H production in p_T^H, m(H+X),
 - Develop indirect sensitivity to BSM effect at large Q²
- High energy reach
 - Direct probes of BSM extensions of Higgs sector
 - Susy Higgses
 - Higgs decays of Heavy Resonances

$$N_{100} = \sigma_{100TeV} \times 30 \text{ ab}^{-1}$$

 $N_{14} = \sigma_{14TeV} \times 3 \text{ ab}^{-1}$

	σ(13 TeV)	σ(100 TeV)	σ(100)/σ(13)
ggH (N ³ LO)	49 pb	803 pb	16
VBF (N ² LO)	3.8 pb	69 pb	16
VH (N ² LO)	2.3 pb	27 pb	11
ttH (N ² LO)	0.5 pb	34 pb	55

27/05/19

For % - level precision in statistically limited rare channels ($\mu\mu$, Z χ)

- In systematics limited channel, to isolate cleaner samples in regions (e.g. @large Higgs pt) with :
 - higher S/B

Large statistics will allow

- smaller impact of systematics
- Hierarchy of changes at large $p_{\tau}(H)$:
 - $\sigma(ttH) > \sigma(gg \rightarrow H)$ above 800 GeV
 - $\sigma(VBF) > \sigma(gg \rightarrow H)$ above 1800 GeV

8

 $p_{T,min}$ (GeV)

Higgs measurements @ FCC-hh

Higgs self-coupling

27/05/19

Higgs and EWSB @ FCChh

Higgs self-coupling @ FCC-hh

- Very small cross-section due to negative interference with box diagram
- HL-LHC projections : $\delta_{\lambda}/\lambda \simeq 100\%$
- Expect large improvement at FCC-hh:
 - σ(100 TeV)/σ(14 TeV) ≈ 40 (and Lx10)
 - x400 in event yields and x20 in precision
- Mainly 4 channels studied:
 - bbyy (most sensitive)
 - bbZZ(4I)
 - bbbbj (boosted)
 - bbWW
 - bbττ coming for the FCC week

Higgs and EWSB @ FCC-hh

HH →bbyy

- BR=0.25%, and large QCD backgrounds (jjyy and y+jets)
- Main difference w.r.t LHC is the very large ttH background
- Strategy:
 - exploit correlation of means in $(m_{\chi\chi}, m_{hh})$ in signal
 - build a parametric model in 2D
 - perform a 2D Likelihood fit on the coupling modifier k_λ
 - $\delta k_{\lambda} / k_{\lambda} = 5\%$ achievable

0.8 0.85 0.9 0.95 1 1.05 1.1 1.15 1.2

 1σ

 $k_{\lambda} = \lambda_{obs} / \lambda_{SM}$

27/05/19

HH →bb4l

- New channel opening at FCC-hh (cross-section 180ab)
 - Clean channel with mostly reducible backgrounds (single Higgs) •
 - Simple cut and count analysis on (4e, 4μ and $2e2\mu$ channels) •
 - $\delta k_{\lambda} / k_{\lambda} = 15-20\%$ depending on systematics assumptions
- Key element for the detector design
 - Powerful reconstruction of low energetic electrons and muons

HH \rightarrow 4b+j boosted

- Large rate allow to look for boosted HH recoiling against a jet
 - low m_{HH} drives the sensitivity
- Relies on the identification of two boosted Higgs-jets
- Fit the di-jet mass spectrum dominated by the large QCD background
- $\delta k_{\lambda} / k_{\lambda} = 20-40\%$ depending on assumed background rate

$\Delta R \approx 2 m_H / p_T$

Higgs couplings

27/05/19

Higgs and EWSB @ FCChh

Higgs decays

- Study sensitivity as a function of minimum $p_{T}(H)$ requirement in the $\gamma\gamma$, ZZ(4I), $\mu\mu$, Z(II) γ channels
- Low p_T(H): small stat. and high syst. unc.
- Large p_T(H): small stat. and high syst. unc.
- O(1-2)% precision on BR achievable up to very high p_T

- 1% lumi + theory uncertainty
- p_T dependent object efficiency
 - δε(e/γ)=0.5(1)% at p_T ->∞
 - Δε(μ)=0.25(0.5)% at p_T ->∞

Ratio of BRs

- Measure ratios of BRs to cancel correlated sources of systematics uncertainties
 - Luminosity
 - Object efficiencies
 - Production cross-section (theory)
- Becomes absolute precision measurement in particular if combined with H->ZZ measurement from e⁺e⁻ (at 0.1%)

27/05/19

Top Yukawa

- Production ratio σ(ttH)/σ(ttZ)
- Measure σ(ttH)/σ(ttZ) in H/Z→bb mode in the boosted regime, in the semi-leptonic channel
- Perform simultaneous fit of double Z and H peak
 - lumi, pdfs, efficiency uncertainties cancel out in ratio
- assuming g_{ttZ} and κ_{b} known to 1% (from FCC-ee) , can measure y_{t} to 1%

Higgs for BSM

Higgs as a probe for BSM: precision/reach

$$\mathcal{L}_{SM}^{(6)} = \mathcal{L}_{SM}^{(4)} + \sum_{i} \frac{c_i}{\Lambda^2} \mathcal{O}_i + \dots$$

$$O = \left| \langle f | L | i \rangle \right|^2 = O_{SM} \left[1 + O(\mu^2 / \Lambda^2) + \cdots \right]$$

For H decays, or inclusive production, $\mu^{\sim}O(v,m_{H})$

$$\delta O \sim \left(\frac{v}{\Lambda}\right)^2 \sim 6\% \left(\frac{{\rm TeV}}{\Lambda}\right)^2$$

- Precision probes large Λ e.g. $\delta O=1\% \Rightarrow \Lambda \simeq 2.5 \text{ TeV}$
- For H production off-shell or with large momentum transfer Q, $\mu^{\sim}O(Q)$ $\delta O \sim \left(\frac{Q}{\Lambda}\right)^2$
- kinematic reach probes large Λ even if precision is "low" e.g. δ*O*=10% at Q=1.5 TeV ⇒ Λ~5 TeV

Complementarity between super-precise measurements at ee collider and large-Q studies at 100 TeV

BR(H->inv) in H+X production at large p_T

- Uses missing transverse energy as a probe to higgs $\ensuremath{p_{\text{T}}}$
 - S/B increases with MET
- Signal extracted using a simultaneous fit to all control regions
 - Z+jets, W+jets, γ+jets
- Z->vv background constrained to the percent level using NNLO QCD/EW
 - relate to measured Z->ee, W and gamma spectra

Higgs and EW phase transition

- Strong 1st order EWPT required to induce matter-antimatter asymmetry at EW scale
- Simple model: extension of the SM scalar sector with a single real singlet scalar
 - Contains 2 higgs scalar, h_1 and h_2 •
 - Interaction of scalar potential can lead to 1st EWPT when SM-like state h₁ has a mass of 125GeV •
 - Modifications in Higgs self coupling, shift in Zh₁, direct production of scalar pairs •
- Parameter space scan for this simple model extension of the SM

How can QU contribute

- As an invited speaker, and not necessarily knowing all the implications of this workshop, I am not sure I am the best person who could tell you how you contribute, but I could give some ideas for Higgs @ FCC-hh
- I can also speak with my software coordinator hat

How can QU contribute

- In Grenada it came across several times that we are not using accurate simulations
 - Could lead to large differences between what we can really achieve with a real detector and real data
 - Historical record that simulations made 20 years ahead of time most often give pessimistic results, because analyses are not optimized
 - Some aspects of detector performances have been tested in full simulation to validate the assumption made in parameterized simulation
 - We welcome anybody that would be interested in simulation and reconstruction studies to validate the current results
- Real R&D for radiation hard silicon detectors?
- Possible studies to be done
 - gauge boson pair production at large mass (to study anomalous couplings)
 - differential measurements:
 - Higgs p_T in the multi-TeV, as a probe of BSM physics
 - VH production at large mass
 - missing HH decay channels (bbττ (~8%), bbbb, etc ...) and combination

Conclusion and outlook

- Higgs-self coupling can be measured with $\delta \kappa_{\lambda}$ (stat) \approx 5% precision at FCC-hh
 - Best achievable precision among all future facilities
- The FCC-hh machine will produce > 10¹⁰ Higgs bosons
 - Such large statistics open up a whole new range of possibilities
 - Allowing for precision in new kinematic regimes as well as very strong probe for BSM
- Measuring ratios of couplings (or equivalently BRs)
 - Allows to cancel systematics
 - 1% precision on "rare" couplings within reach after absolute HZZ measurement in e⁺e⁻
- Extremely rich Higgs program at the FCC, that goes much beyond what was presented
 - light yukawa, Higgs off-shell width measurement, Higgs differentials still to be studied ...

Additional material

Systematics assumptions on Higgs couplings

- 1% systematics on (production x luminosity), meant as a reference target. Assumes good theoretical progress over the next years, and reduction of PDF+αS uncertainties with HL-LHC + FCC-ee.
- e/μ/γ efficiency systematics shown on the right. Conservative ~ today. In situ calibration, with the immense available statistics in possibly new clean channels (Z→μμγ), will most likely reduce the uncertainties.
- All final states considered here rely on reconstruction of mH to within few GeV. Backgrounds (physics and instrumental) to be determined with great precision from sidebands (~ infinite statistics)
- Impact of pile-up: hard to estimate with today's analyses. Focus
- on high-pT objects will help to decrease relative impact of pile-up
- Assume (un-)correlated uncertainties for (different) same final
- state objects
- Following scenarios are considered:
- δstat → stat. only (I) (signal + bkg)
- δ stat , δ eff \rightarrow stat. + eff. unc. (II)
- δ stat , δ eff , δ prod = 1% \rightarrow stat. + eff. unc. + prod (III)

- Considering the 4b boosted final state
- c_v measured at per mille a FCC-ee

arXiv:1611.03860

Deviations in the Higgs p_T spectrum

Point	$m_{\tilde{t}_1} \; [\text{GeV}]$	$m_{\tilde{t}_2} \; [\text{GeV}]$	$A_t \; [\text{GeV}]$	Δ_t
P_1	171	440	490	0.0026
P_2	192	1224	1220	0.013
P_3	226	484	532	0.015
P_4	226	484	0	0.18

27/05/19

28

arXiv:1308.4771

arXiv:1312.3317

VH production at large m(VH)

- arXiv:1512.02572
- Considering anomalous couplings to gauge boson
- Treated here in the context of an effective field theory (EFT)

30

- Considering the 4b boosted final state
- c_v measured at per mille a FCC-ee

arXiv:1611.03860

Both FCC-ee and FCC-hh have outstanding physics cases We are ready to move to the next step, as soon as possible