What will the Future Colliders know about the Higgs?

Quantum Universe Future Platform

DESY, May 27, 2019

High Energy Physics with a Higgs

Higgs@FutureColliders 2

DESY, May 27, 2019

High Energy Physics with a Higgs

,18 J. D'Hondt ECFA **ECFA**

European Committee for Fu

Towards new discoveries via the Higgs sector

- No clear indication where new physics is hiding, hence experimental observations will have to guide us in our exploration.
- One of the avenues is to explore as fast as possible, and as wide as possible, the Higgs sector. • Yukawa couplings
 - Self-couplings (HHH and HHHH)
 - Couplings to $Z/W/\gamma/g$
 - Rare SM and BSM decays (H \rightarrow Meson+ γ , Z γ , FCNC, $\mu e/\tau \mu/\tau e$, ...)
 - CP violation in Higgs decays
 - Invisible decay
 - Mass and width
 - o ...
- Important progress will be made on Higgs physics with the LHC and the HL-LHC.
- To discover new physics inaccessible to the (HL-)LHC, future colliders will be complementary.

November 14th, 2018

Proposal on WG Higgs physics

13

DESY, May 27, 2019

High Energy Physics with a

ECFA

European Committee for

Higgs	
-------	--

e to	
tor.	

ry.	
-----	--

13

Future of HEP

		T ₀			+5					+10					+15					+20	
Friday, January 27,	ILC		0.5/ 250 (j/ab 1.5/ab GeV 250 GeV			/					1.0/ab 0 500 GeV			0.2/ab 2m _{top}	3/ab 500 Ge\		V			
	CEPC			5.6/ 240 (′ab GeV			16, N	/ab 1 _z	2.6 /ab 2M _w											
	CLIC			1 38	.0/ab 0 Ge\	V					2.5/ab 1.5 TeV								5	.0	
	FCC		150/ak ee, M _z) <u>'</u>	10, ee, 2	/ab 2M _w	ee,	5/ab ee, 240 GeV				e	1.7/al e, 2m	b top							
	LHeC		0.0	6/ab				().2/a	b			0.7	2/ab							
	HE- LHC		10/ab per experiment in 20y																		
	FCC eh/hh									20/a	ab pe	er exp	perim	ent ir	n 25y						

+ muon-collider + gamma-gamma collider + ...

ECFA Higgs study group '19

Future of HEP

• --- **4**-

								S	ubje I) r	e ct need 2)	to la l a sc polit	arge u cientific tical app	conser conser proval	a in t nsus	ty _			~
		T ₀		+5			+10				+15			+20			. +26	T_0
Friday, January 27,	ILC	0. 25(5/ab) GeV			1. 25	.5/ab 0 GeV			1.0/a 500 G	ab GeV	0.2/ab 2m _{top}		3/ab 500 Ge	eV			2032
	CEPC		5.6 240	/ab GeV		16/a M _z	b 2.6 /ab 2M _w										SppC =>	2030
	CLIC		1 38	0/ab 30 GeV					2.5/ab 5.0/ab => 1.5 TeV 3.0 T					> until -) TeV	+28	2035		
	FCC	150/ ee, N	ab A _z	10/ab ee, 2M _w	ee,	5/ab 240 Ge	eV	e	1.7/ak ee, 2m	b top							hh,eh =>	2037
	LHeC	0	.06/ab)		0.2	2/ab		0.72	2/ab								2030
	HE- LHC					10	10/ab per experiment in 20y								2040			
	FCC eh/hh			20/ab per experiment in 25y										2045				

+ muon-collider + gamma-gamma collider + ...

ECFA Higgs study group '19

Future of HEP

Summary of National Inputs

S. Bethke (MPP Munich)

Proton collider

Colliders being considered

Collider	Туре	\sqrt{s}	P [%]	N(Det.)	$\mathscr{L}_{\mathrm{inst}}$	L	Time	Refs.	Abbreviation
			$[e^{-}/e^{+}]$		$[10^{34}] \mathrm{cm}^{-2}\mathrm{s}^{-1}$	$[ab^{-1}]$	[years]		
HL-LHC	pp	14 TeV	-	2	5	6.0	12	[10]	HL-LHC
HE-LHC	pp	27 TeV	_	2	16	15.0	20	[10]	HE-LHC
FCC-hh	pp	100 TeV	-	2	30	30.0	25	[1]	FCC-hh
FCC-ee	ee	M_Z	0/0	2	100/200	150	4	[1]	
		$2M_W$	0/0	2	25	10	1-2		
		240 GeV	0/0	2	7	5	3		FCC-ee ₂₄₀
		$2m_{top}$	0/0	2	0.8/1.4	1.5	5		FCC-ee ₃₆₅
		-					(+1)	(1y SE	D before $2m_{top}$ run)
ILC	ee	250 GeV	$\pm 80/\pm 30$	1	1.35/2.7	2.0	11.5	[3,11]	ILC ₂₅₀
		350 GeV	$\pm 80/\pm 30$	1	1.6	0.2	1		ILC ₃₅₀
		500 GeV	$\pm 80/\pm 30$	1	1.8/3.6	4.0	8.5		ILC ₅₀₀
							(+1)	(1y SD	after 250 GeV run)
CEPC	ee	M_Z	0/0	2	17/32	16	2	[2]	CEPC
		$2M_W$	0/0	2	10	2.6	1		
		240 GeV	0/0	2	3	5.6	7		
CLIC	ee	380 GeV	$\pm 80/0$	1	1.5	1.0	8	[12]	CLIC ₃₈₀
		1.5 TeV	$\pm 80/0$	1	3.7	2.5	7		CLIC ₁₅₀₀
		3.0 TeV	$\pm 80/0$	1	6.0	5.0	8		CLIC ₃₀₀₀
							(+4)	(2y SDs b	etween energy stages)
LHeC	ep	1.3 TeV	-	1	0.8	1.0	15	[9]	LHeC
HE-LHeC	ep	1.8 TeV	_	1	1.5	2.0	20	[1]	HE-LHeC
FCC-eh	ep	3.5 TeV	-	1	1.5	2.0	25	[1]	FCC-eh

NB: number of seconds/year differs: ILC 1.6x10⁷, FCC-ee & CLIC: 1.2x10⁷, CEPC: 1.3x10⁷

Christophe Grojean

Higgs@FutureColliders

4

ECFA Higgs study group '19

DESY, May 27, 2019

Higgs couplings: kappa vs EFT

Complementarity between the two approaches

Kappa:

- Close connection to exp measurements
- Widely used
- Exploration tool (very much like epsilons for LEP)
- Could still valid even with light new physics
- Captures leading effects of UV motivated scenarios (SUSY, composite)
- Doesn't require BSM theoretical computations

EFT:

- Allows to put Higgs measurements in perspective with other measurements (EW, diboson, flavour...)
- Connects measurements at different scales (particularly relevant for high-energy colliders CLIC, FCC-hh)
- Fully exploits more exclusive observables (polarisation, angular distributions...)
- Can accommodate subleading effects (loops, dim-8...)
- Fully QFT consistent framework
- Assumptions about symmetries more transparent
- Valid only if heavy new physics

DESY, May 27, 2019

Kappa Framework

- Kappa fit method described in <u>https://arxiv.org/abs/1209.0040</u> : HXSWG interim recommendations to explore the coupling structure of a *Higgs-like particle.*
 - $-\mathbf{k}^{2}_{\mathbf{X}} = \Gamma_{\mathbf{H} \to \mathbf{X}} / \Gamma^{\mathbf{SM}}_{\mathbf{H} \to \mathbf{X}}$

Christophe Grojean

- for top coupling above the ttH threshold: $k_t^2 = \sigma_{ttH} / \sigma^{SM}_{ttH}$
- Not general parametrisation of BSM, but has the advantage of simple framework, largely known in the hep community
- Scheme adopted by Higgs@FutureColliders (H@FC):
 - 10 coupling modifiers : $k_W, k_Z, k_t, k_b, k_c, k_\tau, k_\mu, k_g, k_\gamma, k_{Z\gamma}$
 - $k_{\rm H}^2 = \Gamma_{\rm H} / \Gamma_{\rm H}^{\rm SM} = \Sigma (k_i^2 \times BR^{j}_{\rm SM}) / (1 BR_{i,u}) \qquad (BR_{i,u} = BR_{inv} + BR_{unt})$
 - BR_{inv} = Higgs boson non-SM decays with invisible final states
 - **Br**_{unt} = Higgs boson non-SM decays difficult to separate from the background
 - Higgs boson selfcoupling fixed to SM value
 - Low-energy machines don't have access to k_t

Scenario	B <i>R</i> _{inv}	BR _{unt}	include HL-LHC
kappa-0	fixed at 0	fixed at 0	no
kappa-1	measured	fixed at 0	no
kappa-2	measured	measured	no
kappa-3	measured	measured	yes

Higgs@FutureColliders

LHC

Assumption kV<1 made for hadron collider alone (not needed for ee-colliders)

DESY, May 27, 2019

About Ky<I assumption

kappa-0	HL-LHC	HL-LHC(YR)	HL-LHC
κ_W (%)	1.2	1.7	1.9
$\kappa_Z(\%)$	1.0	1.5	1.6
κ_g (%)	2.2	2.5	2.6
$\kappa_{\gamma}\left(\% ight)$	1.7	1.8	2.0
$\kappa_{Z\gamma}(\%)$	10		11
κ_{c} (%)	_	-	
κ_t (%)	2.8	3.4	2.8
κ_b (%)	2.7	3.7	3.5
κ_{μ} (%)	4.4	4.3	4.6
$\kappa_{ au}$ (%)	1.6	1.9	1.9
	1		*
H@FC w/ assumption kV <i< td=""><td></td><td></td><td></td></i<>			

Christophe Grojean

→ H@FC w/o assumption kV<I

DESY, May 27, 2019

Results of kappa-2 fit

Christophe Grojean

ECFA Higgs study group '19

Kappa-2, May 2019

- CLIC₃₈₀
- ILC₅₀₀+ILC₃₅₀+ILC₂₅₀
- ILC_{250}
- LHeC ($|\kappa_V| \leq 1$)
- HE-LHC ($|\kappa_V| \leq 1$)
- HL-LHC ($|\kappa_V| \leq 1$)

DESY, May 27, 2019

Results of kappa-3 fit

Christophe Grojean

ECFA Higgs study group '19

Kappa-3, May 2019

- $CLIC_{380}$
- ILC₅₀₀+ILC₃₅₀+ILC₂₅₀
- ILC₂₅₀
- LHeC ($|\kappa_V| \leq 1$)
- HE-LHC ($|\kappa_V| <\leq 1$)
- HL-LHC ($|\kappa_V| \leq 1$)

DESY, May 27, 2019

Results of kappa-3 fit

Christophe Grojean

DESY, May 27, 2019

2. Statistically limited channels: aa, mumu, Za

Important synergy HL-LHC — low lepton colliders I.Top Yukawa

Kappa-3, May 2019

ECFA Higgs study group '19

EFT Framework

• Many advantages offered by the EFT approach

these describes correlation of New Dhysics (ND) offects in differen

SMEFT: Bottom-Up approach

linearly realised Lagrangian

- We don't consider BSM Higgs boson decays

Flavour "assumptions": Neutral Diagonal (ND)

-*Hff* and *Vff* (*HVff*) diagonal in the physical basis -Vff (HVff) flavour universality respected by first 2 quark families

-For H & EW exploration purposes only -Cumbersome from model-building point of view to avoid FCNC

 $\mathrm{SMEFT}_{\mathrm{ND}} \equiv \{\delta m, \ c_{gg}, \ \delta c_{z}, \ c_{\gamma\gamma}, \ c_{z\gamma}, \ c_{zz}, \ c_{z\Box}, \ \delta y_{t}, \ \delta y_{c}, \ \delta y_{b}, \ \delta y_{ au}, \$ $+\{(\delta g_{L}^{Zu})_{q_{i}}, (\delta g_{L}^{Zd})_{q_{i}}, (\delta g_{L}^{Z\nu})_{\ell}, (\delta g_{L}^{Ze})_{\ell}, (\delta g_{R}^{Zu})_{q_{i}}, (\delta g_{R}^{Zd})_{q_{i}}, (\delta g_{R}^{$

5 SM + 30 New Physics Parameters

$$egin{aligned} & y_\mu, \; \lambda_z \ & \left\{ \delta g_R^{Ze}
ight\}_{q_1=q_2
eq q_3, \; \ell=e,\mu, au} \end{aligned}$$

DESY, May 27, 2019

Higgs (and EW) physics at Future Colliders

	Higgs	aTGC	EWPO	Top EW	
FCC-ee	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom.) ^{Warning}	Yes	Yes (365 GeV, Ztt)	
ILC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (μ, σ _{ZH}) Complete with HL-LHC) Yes (HE limit) Warning HL-LHC + V		Yes (500 GeV, Ztt)	
CEPC	Yes (μ, σ _{ZH}) (Complete with HL-LHC)	Yes (aTGC dom) _{Warning}	Yes	No	
CLIC	Yes (μ, σ _{ZH})	Yes (Full EFT parameterization)	LEP/SLD (Z-pole) + HL-LHC + W (CLIC)	Yes	
HE-LHC	Extrapolated from HL-LHC	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin²θ _w)	_	
FCC-hh	Yes (µ, BRi/BRj) Used in combination with FCCee/eh	From FCC-ee	From FCC-ee	_	
LHeC	Yes (µ)	N/A → LEP2	LEP/SLD + HL-LHC (M _w , sin ² θ _w)	_	
FCC-eh	Yes (µ) Used in combination with FCCee/hh	From FCC-ee	From FCC-ee + Zuu, Zdd	-	

Christophe G, Open Symposium - Update of the European Strategy for Particle Physics

Jorge de Blas

r, May 27, 2019

Global fit results

Open Symposium - Update of the European Strategy for Particle Physics Christophe (

Figures of Merit with Respects to HL-LHC

	HE	. II.			CLIC	CLIC		FCC		Cec/e	7
~1	eC r	HC.	-250	500	380	1500	3000	PC	ez ₄₀	ez cz	Vhh
g_{HZZ}^{eff} –	l 1.7	1.2	7.7	≥ 10	5.5	≥ 10	≥ 10	6.9	7.7	≥ 10	≥ 10
$g_{HWW}^{ m eff}$ –	1.8	1.3	6.7	≥ 10	4.9	≥ 10	≥ 10	6.3	7.0	≥ 10	≥ 10
$g_{H\gamma\gamma}^{ m eff}$ -	1.7	1.3	2.8	3.4	2.6	3.1	3.4	3.1	3.1	3.1	≥ 10
$g_{HZ\gamma}^{\mathrm{eff}}$ -	1.1	2.4	1.1	1.6	1.1	2.3	3.0	1.7	1.1	1.2	≥ 10
$g_{Hgg}^{ m eff}$ –	1.4	1.7	2.0	2.8	1.7	2.3	2.9	2.8	2.3	2.7	4.5
$g_{Htt}^{ m eff}$ –	1.1	1.7	1.1	1.2	1.1	1.4	1.4	1.1	1.1	1.1	1.8
$g_{Hcc}^{ m eff}$ –	*		*	*	*	*	*	*	*	*	*
$g_{Hbb}^{ m eff}$ –	2.7	1.5	6.1	9.8	5.1	≥ 10	≥ 10	7.6	7.3	9.1	≥ 10
$g_{H au au}^{ ext{eff}}$ -	1.6	1.3	4.1	5.8	2.7	3.8	4.8	5.0	5.0	6.1	7.8
$g_{H\mu\mu}^{ m eff}$ –	1.2	1.8	1.3	1.4	1.3	1.4	1.6	1.4	1.4	1.4	≥ 10
$\delta g_{1Z}[imes 10^2]$ -	1.3	1.4	6.7	≥ 10	≥ 10	≥ 10	≥ 10	7.3	7.8	≥10	≥10
$\delta\kappa_{\gamma}[imes 10^2]$ -	1.3	1.2	≥ 10	≥10	≥ 10	≥10	$\geq 10^{2}$	≥ 10	≥ 10	≥ 10	≥10
$\lambda_Z[imes 10^2]$ -	1.1	1.0	≥ 10	$\geq 10^{2}$	≥ 10	$\geq 10^{2}$	$\geq 10^3$	≥ 10	≥ 10	≥ 10	≥10
S	SMEF	T ND		(*)	not m	easure	d at H	L-LHC	2		

Christophe Grojean

Higgs@FutureColliders 13

M. Cepeda for Higgs@FC WG

DESY, May 27, 2019

Impact of SM theory uncertainties

Symposium - Undate of the European Strategy for Particle Physics

S

Parametric theory uncertainties: For an observable O, this is the error associated to the propagation of the experimental error of the SM input parameters to the prediction O_{SM} .

Intrinsic theory uncertainties: Estimate of the net size associated with the contributions to O_{SM} from missing higher-order corrections in perturbation

Impact of Z-pole measurements

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul to appear

Christophe Grojean

15

DESY, May 27, 2019

Higgs@FutureColliders

Impact of Z-pole measurements

Christophe Grojean

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul to appear

DESY, May 27, 2019

Impact of Beam Polarisation

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul to appear

Christophe Grojean

Higgs@FutureColliders 17

DESY, May 27, 2019

Impact of Beam Polarisation

J. De Blas, G. Durieux, C. Grojean, J. Gu, A. Paul to appear

 $\sigma_{P_e+P_e^-} = \sigma_0(1$

Gain in higher in global EFT fit since polarisation removes degeneracies among operators

Polarisation benefit diminishes when other runs at higher energies are added

Christophe Grojean

Higgs@FutureColliders 18

Statistical gain from increased rates

$$-P_{e^+}P_{e^-})\left[1-A_{LR}\frac{P_{e^-}-P_{e^+}}{1-P_{e^+}P_{e^-}}\right]$$

From ee \rightarrow Zh, A_{LR}~0.15 so $\sigma_{-80,+30} \sim 1.4 \sigma_0$

overall, one could expect ~10-15% increased coupling sensitivity

DESY, May 27, 2019

Higgs self-coupling

Higgs self-couplings is very interesting for a multitude of reasons

(vacuum stability, hierarchy, baryogenesis, GW, EFT probe...).

How much different from the SM can it be given the tight constraints on other Higgs couplings?

Sensitivity on Higgs cubic self-coupling is often obtained in many different ways:

- 1. an exclusive analysis of HH production, i.e., a fit of the double Higgs cross section considering only deformation of the Higgs cubic coupling;
- 2. a global analysis of HH production, i.e., a fit of of the double Higgs cross section considering also all possible deformations of the single Higgs couplings that are already constrained by single Higgs processes;
 - (a) the global fit does not consider the effects at higher order of the modified Higgs cubic coupling to single Higgs production and to Higgs decays;
 - (b) these higher order effects are included;
- 3. an exclusive analysis of single Higgs processes at higher order, i.e., considering only deformation of the Higgs cubic coupling;
- 4. a global analysis of single Higgs processes at higher order, i.e., considering also all possible deformations of the single Higgs couplings.

Higgs@FutureColliders 19

DESY, May 27, 2019

Higgs self-coupling

Higgs self-couplings is very interesting for a multitude of reasons

(vacuum stability, hierarchy, baryogenesis, GW, EFT probe...).

How much different from the SM can it be given the tight constraints on other Higgs couplings?

Sensitivity on Higgs cubic self-coupling is often obtained in many different ways:

	di-Higgs	Si
exclusive	1. di-H, excl. • Use of σ(HH) • only deformation of κλ	3. sing • single Higgs pro • only deformation
global	 2. di-H, glob. Use of σ(HH) deformation of κλ + of the single-H couplings (a) do not consider the effects at higher order of κλ to single H production and decays (b) these higher order effects are included 	4. single • single Higgs pro • deformation of K co

Don't take one bound and use it for a model where it doesn't apply!

Christophe Grojean

19

ingle-H

le-H, excl. cesses at higher order of κλ

le-H, glob. cesses at higher order λ + of the single Higgs uplings

DESY, May 27, 2019

Higgs@FutureColliders

Higgs self-coupling

collider	(1) di-H excl.	(2.a) di-H glob.	(3) single-H excl.	(4) single-H glob.
HL-LHC	$^{+60}_{-50}\%$ (50%)	52%	46%	50%
HE-LHC	10-20% (n.a.)	n.a.	41%	50%
ILC ₂₅₀			28%	49%
ILC ₃₅₀	—	—	28%	47%
ILC ₅₀₀	27% (27%)	27%	26%	37%
CLIC ₃₈₀	—	—	45%	50%
CLIC ₁₅₀₀	36% (36%)	36%	40%	49%
CLIC ₃₀₀₀	$^{+11}_{-7}\%$ (n.a.)	n.a.	35%	49%
FCC-ee ₂₄₀	_	_	19%	48%
FCC-ee ₃₆₅	_	_	19%	34%
FCC-ee/eh/hh	5% (5%)	6%	18%	25%
CEPC	_		17%	49%

DESY, May 27, 2019

Light Yukawas

	HL-LHC	+LHeC	+HE-LHC	+ILC ₅₀₀	+CLIC ₃₀₀₀	+CEPC	+FCC-ee ₂₄₀	+FCC-ee/
ĸ	570.	320.	420.	330.	430.	290.	310.	280.
Кd	270.	150.	200.	160.	200.	140.	140.	130.
κ_{s}	13.	7.3	9.4	7.5	9.9	6.6	7.	6.4
ĸ	1.2		0.87	measured directly				

Higgs@FutureColliders 21

DESY, May 27, 2019

All future colliders have a rich potential to outperform (HL-)LHC in Higgs physics: * Legacy measurements that will go into textbook

* Reach in BSM discoveries

* Refinements in our understanding of Nature

Uncertainty on the uncertainties is probably larger than the differences in the different projections

B. Heinemann for Higgs@FC WG

Christophe Grojean

DESY, May 27, 2019

All future colliders have a rich potential to outperform (HL-)LHC in Higgs physics:

* Legacy measurements that will go into textbook

* Reach in BSM discoveries

* Refinements in our understanding of Nature

Uncertainty on the uncertainties is probably larger than the differences in the different projections

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
	CLIC380	9	6	4	7
Initial	FCC-ee240	10	8	3	9
run	CEPC	10	8	3	10
	ILC250	10	7	3	11
	FCC-ee365	10	8	6	15
2 nd /3rd	CLIC1500	10	7	7	17
Run ee	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

P Hoinomann fon Hidda@FP MA

Christophe Grojean

Higgs@FutureColliders 22

Banker accounting: Very important to get money

DESY, May 27, 2019

All future colliders have a rich potential to outperform (HL-)LHC in Higgs physics:

* Legacy measurements that will go into textbook

* Reach in BSM discoveries

* Refinements in our understanding of Nature

Uncertainty on the uncertainties is probably larger than the differences in the different projections

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
	CLIC380	9	6	4	7
Initial	FCC-ee240	10	8	3	9
run	CEPC	10	8	3	10
	ILC250	10	7	3	11
	FCC-ee365	10	8	6	15
2 nd /3rd	CLIC1500	10	7	7	17
Run ee	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

P Hoinomann fon Hidda@FP MA

Christophe Grojean

Higgs@FutureColliders 22

Banker accounting: Very important to get money Specific BSM models will care maybe even more about correlations

DESY, May 27, 2019

All future colliders have a rich potential to outperform (HL-)LHC in Higgs physics:

* Legacy measurements that will go into textbook

* Reach in BSM discoveries

* Refinements in our understanding of Nature

Uncertainty on the uncertainties is probably larger than the differences in the different projections

		Factor ≥2	Factor ≥5	Factor ≥10	Years from T_0
	CLIC380	9	6	4	7
Initial	FCC-ee240	10	8	3	9
run	CEPC	10	8	3	10
	ILC250	10	7	3	11
	FCC-ee365	10	8	6	15
2 nd /3rd	CLIC1500	10	7	7	17
Run ee	HE-LHC	1	0	0	20
	ILC500	10	8	6	22
hh	CLIC3000	11	7	7	28
ee,eh & hh	FCC-ee/eh/hh	12	11	10	>50

P Hoinomann fon Hidda@FP MA

Christophe Grojean

Higgs@FutureColliders 22

Banker accounting: Very important to get money Specific BSM models will care maybe even more about correlations

Nobody knows what BSM is

DESY, May 27, 2019

Higgs@FutureColliders 23

DESY, May 27, 2019

Higgs@FutureColliders 23

DESY, May 27, 2019

Higgs@FutureColliders

23

Christophe Grojean

Look carefully at the plot and you'll see that, with a dedicated Z-pole, the correlations between Higgs and EW observables go away

DESY, May 27, 2019

Higgs@FutureColliders

23

Christophe Grojean

Look carefully at the plot and you'll see that, with a dedicated Z-pole, the correlations between Higgs and EW observables go away

More correlations among EW observables at CEPC240 than at FCC240.Why?

DESY, May 27, 2019