Primary Vertex resolution after applying beamspot constraint

Diwakar
25/02/19

INFORMATION AVAILABLE IN THE BIG NTUPLES
 1. Reconstructed primary vertex
 2. Reconstructed primary vertex covariant matrix
 3. Beamspot position
 4. Beamspot covariant matrix

The idea is to recalculate the primary vertex by using this information by the method of minimising X^{2}

RECALCULATING PV BY MINIMISING x^{2}

Suppose:

- $X(p v)=3$ vector containing PV
- $X(b s)=3$ vector containing beamspot position
- $\mathrm{V}(\mathrm{pv})=3^{*} 3$ matrix containing PV covariant matrix (it is symmetric)
- $\mathrm{V}(\mathrm{bs})=3^{*} 3$ matrix containing beamspot covariant matrix (it is also symmetric)

Then X^{2} will be defined as:

$$
(x-x(b s))^{\top} V(b s)^{-1}(x-x(b s))+(x-x(p v))^{\top} V(p v)^{-1}(x-
$$

$x(p v))$
The next task is to minimise x^{2} w.r.t. x by taking the derivative of above equation w.r.t. x and putting it equal to 0 (done in next slide). From the resulting equation we will find the value of x for which x^{2} is minimum.

RECALCULATING PV BY MINIMISING x^{2}

$$
x^{2}=(x-x(b s))^{\top} V(b s)^{-1}(x-x(b s))+(x-x(p v))^{\top} V(p v)^{-1}(x-x(p v))
$$

x is not a number but a 3 vector or 3*1 matrix.
Now taking derivative w.r.t x and putting it $=0$.

$$
\begin{aligned}
& (x-x(b s))^{\top} V(b s)^{-1}+(x-x(b s))^{\top}\left(V(b s)^{-1}\right)^{\top}+(x-x(p v))^{\top} V(p v)^{-1}+ \\
& (x-x(p v))^{\top}\left(V(p v)^{-1}\right)^{\top}=0
\end{aligned}
$$

Where we have used the identities:

$$
\frac{\mathrm{d}\left(\mathbf{u}^{\mathrm{T}} \mathbf{A} \mathbf{v}\right)}{\mathrm{d} \mathbf{x}}=\mathbf{u}^{\mathrm{T}} \mathbf{A} \frac{\mathrm{~d} \mathbf{v}}{\mathrm{~d} \mathbf{x}}+\mathbf{v}^{\mathrm{T}} \mathbf{A}^{\mathrm{T}} \frac{\mathrm{~d} \mathbf{u}}{\mathrm{~d} \mathbf{x}}
$$

$$
\frac{d x^{\mathbf{T}}}{\mathrm{dx}}=\mathbf{I}
$$

RECALCULATING PV BY MINIMISING x^{2}

$$
\begin{aligned}
& (x-x(b s))^{\top} V(b s)^{-1}+(x-x(b s))^{\top}\left(V(b s)^{-1}\right)^{\top}+(x-x(p v))^{\top} V(p v)^{-1} \\
& +(x-x(p v))^{\top}\left(V(p v)^{-1}\right)^{\top}=0
\end{aligned}
$$

Since $\mathrm{V}(\mathrm{bs})$ and $\mathrm{V}(\mathrm{pv})$ are symmetric, $\mathrm{V}(\mathrm{bs})^{-1}$ and $\mathrm{V}(\mathrm{pv})^{-1}$ will also be symmetric, i.e.

$$
\left(\mathrm{V}(\mathrm{bs})^{-1}\right)^{\top}=\mathrm{V}(\mathrm{bs})^{-1} \text { and }\left(\mathrm{V}(\mathrm{pv})^{-1}\right)^{\top}=\mathrm{V}(\mathrm{pv})^{-1}
$$

Using this result and rearranging terms in above equation, we will get:

$$
x^{\top}=\left[x(b s)^{\top} 2 V(b s)^{-1}+x(p v)^{\top} 2 V(p v)^{-1}\right]\left[2 V(b s)^{-1}+2 V(p v)^{-1}\right]^{-1}
$$

IMPLEMENTATION AND EXECUTION OF CODE

The code was written in SynchNTupleProducer.cpp
I ran the code for gg->H MC sample.
I selected the events in mt_{h} channel for producing SynchNTuples.
The primary vertex resolution plots are presented in the following slides:

CONCLUSIONS

- Beamspot constraint leads to a big improvement in resolution in x and y direction but it miscalculates the z direction totally.
- The effect of refitting is being totally washed out upon applying beamspot constraint in x and y direction.

Primary Vertex resolution after applying beamspot constraint (cont.)

Diwakar

11 Mar 2019

Done previously:

- Applied beamspot constraint to the primary vertex (both reconstructed and refitted) and checked the improvement in resolution.
- Resolution was checked in all three directions: x, y, z
- Big improvement was seen in x and y directions (SD decreased by a factor of 10 after applying BS)
- z direction was getting miscalculated totally.
- "Refitted vertex with BS" value was being calculated almost equal to the value for "Reconstructed vertex with BS".

Further progress:

- Used more events (~ 4000 compared to last time's ~ 400)
- Dropped the z direction totally i.e. beamspot is now being applied only in x and y direction and the covariant matrices are $2 * 2$ instead of $3 * 3$.
- Found the reason why value of "Refitted vertex with BS" was being calculated almost equal to the value for "Reconstructed vertex with BS".

A few observations:

- I had been using gg->H->tautau MC file and noticed a few things:
- All the events (about 93000) in that file have same value of "beamspot_position" and is equal to $(x, y)=(-0.0247936,0.0692861)$.
- Also all the events have same value of beamspot covariant matrix equal to :

$$
\left[\begin{array}{ll}
3.0575 * 10^{-11} & -4.57847 * 10^{-14} \\
-4.57847 * 10^{-14} & 3.09172 * 10^{-11}
\end{array}\right]
$$

A few observations (cont.)

- The reconstructed PV covariant matrix is much bigger than beamspot covariant matrix:
$\left[\begin{array}{ll}\sim \mathrm{O}\left(10^{-11}\right) & \sim \mathrm{O}\left(10^{-14}\right) \\ \sim \mathrm{O}\left(10^{-14}\right) & \sim \mathrm{O}\left(10^{-11}\right)\end{array}\right]$
BEAMSPOT

$\left[\begin{array}{ll}\sim \mathrm{O}\left(10^{-6}\right) & \sim \mathrm{O}\left(10^{-7}\right) \\ \sim \mathrm{O}\left(10^{-7}\right) & \sim \mathrm{O}\left(10^{-6}\right)\end{array}\right]$
RECONSTRUCTED PV
- Consequently beamspot covariant inverse is much bigger:
$\left[\begin{array}{l}\sim \mathrm{O}\left(10^{11}\right) \\ \sim \mathrm{O}\left(10^{8}\right)\end{array}\right.$

INVERSE BEAMSPOT

$\left.\begin{array}{l}\sim O\left(10^{5}\right) \\ \sim O\left(10^{6}\right)\end{array}\right]$

A look at the formula of beamspot constraint

$$
x^{\top}=\left[x(b s)^{\top} V(b s)^{-1}+x(p v)^{\top} V(p v)^{-1}\right]\left[V(b s)^{-1}+V(p v)^{-1}\right]^{-1}
$$

where $\mathrm{V}(\mathrm{bs})^{-1}=$ inverse of beamspot cov matrix
$\mathrm{V}(\mathrm{pv})^{-1}=$ inverse of reconstructed $p v$ cov matrix
$\mathrm{V}(\mathrm{bs})^{-1} \gg \mathrm{~V}(\mathrm{pv})^{-1}$

$x \approx x(b s)$

The value of recalculated PV that we get is actually very close to the beamspot position (the difference is seen in 6th or 7 th place in decimal).

This is actually the reason why last time i was getting almost same value of reconstructed and refitted PV after applying beamspot constraint (i was using reconstructed cov matrix for refitted recalculation as well); they were both coming almost equal to x (bs).

Plots

- More statistics were used this time (~ 4000 compared to ~ 400 last time)
- The resolution was found by fitting single gaussian.
- The beamspot constraint could not be applied to refitted vertices because their covariant matrices were equal to zero matrices (this could be a bug)

Plots in x direction

$S D=0.001241$

SD = 0.0008197

Plots in y direction

$S D=0.001222$

SD = 0.0008302

Next steps...

- Use more statistics by including all the events available in the file. Till now i have been using the mt channel in Synch ntuple. I can use all the events in the big ntuple to do the studies.
- I plan to check the effect of bs constraint on the resolution of PCA and IP.

Primary Vertex resolution after applying beamspot constraint (cont.)

Diwakar
18 Mar 2019

1. Corrected the bug that was producing null covariant refitted matrices
2. Made a comparison between the offline beamspot constraint results and the results produced by applying beamspot constraint using the tools in CMSSW

OLD SAMPLE (OFFLINE BS CONSTRAINT)

NEW SAMPLE (CMSSW BS CONSTRAINT)

OLD SAMPLE (OFFLINE BS CONSTRAINT)

NEW SAMPLE (CMSSW BS CONSTRAINT)

Primary Vertex resolution after applying beamspot constraint (cont.)

Diwakar
1 April 2019

SHOWN LAST TIME:

1. Comparison of PV resolution with BS constraint in two cases:

BS constraint was applied offline (by method of minimising chi2)
BS constraint was applied online (using CMSSW in built functions)
2. Resolution was found to be better in 2nd case (online). Also the new PV was not equal to beamspot position in 2nd case.

FOUR CHOICES

- Primary vertex
- Primary vertex with BS constraint
- Refitted Primary vertex
- Refitted Primary vertex with BS constraint

HOW TO CHOOSE

- Compare resolution of PV (in x, y, z)
- Compare resolution of PCA (in x, y, z)
- Compare resolution of IP

PRIMARY VERTEX

PRIMARY VERTEX WITH BS

REFITTED PRIMARY VERTEX

$P V_{X}^{\text {reco_with_bs }}-\mathrm{PV}_{\mathrm{X}}^{\text {gen }}$

REFITTED PRIMARY VERTEX WITH BS

PRIMARY VERTEX

$P V_{Y}^{\text {reco }}-P V_{Y}^{\text {gen }}$

PRIMARY VERTEX WITH BS

REFITTED PRIMARY VERTEX WITH BS

PRIMARY VERTEX

PRIMARY VERTEX WITH BS

REFITTED PRIMARY VERTEX WITH BS

RESOLUTION TABLE

	PRIMARY VERTEX	PRIMARY VERTEX WITH BS	REFITTED PRIMARY VERTEX	REFITTED PRIMARY VERTEX WITH BS
X	0.001244	0.0006945	0.001312	0.0006883
Y	0.001261	0.0006934	0.001366	0.0006993
Z	0.001707	0.001717	0.001848	0.0018

CONCLUSIONS

- Using Primary vertex with BS constraint seems to be the best option.
- For applying BS constraint, using CMSSW algorithm is better than doing it offline.

