

$\mathsf{B} o V \ell u$ Form Factors & the Hybrid MC

Status Report

Markus Prim | 1st April 2019

What is this about?

... Resonant Decays

- Different models available, commonly used are BCL, ISGW2, ...
- Models describe the double differential decay rate $\mathrm{d}\Gamma(\mathrm{B} \to X_{\!\scriptscriptstyle \mathrm{II}} \ell \nu) / \mathrm{d} E_{\!\scriptscriptstyle \ell}^{\mathrm{B}} \mathrm{d} q^2$
- They can not produce n- π -final states

... Inclusive Decays

- Different models available, commonly used DFN, BLNP, ...
- Models describe the triple differential decay rate $\mathrm{d}\Gamma(\mathsf{B}\to X_\mathsf{u}\ell\nu)$ / $\mathrm{d}m_X\mathrm{d}E_\ell^\mathrm{B}\mathrm{d}q^2$
- They neither produce hadronic states with $m_X < 2m_\pi$ nor any resonant structures in the m_X spectrum

But we do not have a model which describes both at the same time!

Improvement of B ightarrow V ℓu , V = $\{ ho,\omega\}$ Predictions

- Hadronic Matrix Element can not be calculated with pertubation theory
- $lue{}$ ightarrow described by form factors
- lacktriangle form factors are parametrized by e.g. BCL expansion
- Predictions for BCL coefficients from LCSR (low q^2 region)

Nota bene: Belle used the SLPole model, which has an implementation error and badly describes the high q^2 region if not treated with caution.

Improvement of B ightarrow V ℓu , V = $\{ ho, \omega\}$ Predictions

- Assumption: BCL coefficients are the correct parametrization for the form factors.
- Up to now: Predictions rely on LCSR calculations.
- Now: Use measured differential branching fractions (Belle & BaBar) of B $\to \rho/\omega\ell\nu$ decays and fit them together with the LCSR predictions
- Input:
 - https://arxiv.org/abs/1503.05534
 - https://arxiv.org/abs/1306.2781
 - https://arxiv.org/abs/1005.3288
 - https://arxiv.org/abs/1205.6245

Improvement of B ightarrow V ℓu , V = $\{ ho,\omega\}$ Predictions

• Perform χ^2 fit:

$$\begin{split} \chi^2(\textit{V}_{\rm ub}, \vec{\textit{a}}) &= \chi^2_{\rm LCSR}(\vec{\textit{a}}) + \chi^2_{\rm Data}(\textit{V}_{\rm ub}, \vec{\textit{a}}), \\ \chi^2_{\rm LCSR}(\vec{\textit{a}}) &= \Delta \vec{\textit{a}}^T \mathbf{C}_{\rm LCSR}^{-1} \Delta \vec{\textit{a}}, \\ \chi^2_{\rm Data}(\textit{V}_{\rm ub}, \vec{\textit{a}}) &= \sum_{\rm Exp} \Delta \vec{\textit{y}}^T \mathbf{C}_{\rm meas}^{-1} \Delta \vec{\textit{y}}, \end{split}$$
 with $\Delta \vec{\textit{a}} = (\vec{\textit{a}}_{\rm LCSR} - \vec{\textit{a}})$ and $\Delta \vec{\textit{y}} = \left(\frac{\Delta \mathcal{B}_{\rm meas}}{\Delta \textit{q}^2}\right) - \left(\frac{\Delta \mathcal{B}(\textit{V}_{\rm ub}, \vec{\textit{a}})}{\Delta \textit{q}^2}\right).$

(1)

Improvement of B ightarrow V ℓu , V = $\{ ho,\omega\}$ Predictions

Improvement of B \rightarrow V $\ell\nu$, V = { π , ρ , ω } Predictions

- First takeaway message:
 - Use BCL instead of SLPole model for form factors.
 - lacksquare Improvement of the B ightarrow $\mathrm{V}\ell
 u$ predictions by factor of 2
- Next step:
 - Marry inclusive and exclusive prediction
 - lacksquare ightarrow Follow the Hybrid Model approach

Hybrid MC: What we work with

latoct	measurements	and	ucod	modale	
Laiesi	measurements	and	usea	models	

	Editor modernments and dood modern						
B^+	$\to \pi \ell \nu$	$\to \eta \ell \nu$	$\rightarrow \eta' \ell \nu$	$\to \omega \ell \nu$	$\to \rho \ell \nu$	$ ightarrow$ u ℓu incl.	
\mathcal{B}	$7.8 \cdot 10^{-5}$	$3.9 \cdot 10^{-5}$	$2.3 \cdot 10^{-5}$	$1.19 \cdot 10^{-4}$	$1.58 \cdot 10^{-4}$	$2.2 \cdot 10^{-3}$	
Model	BCL	ISGW2	ISGW2	BCL	BCL	DFN, ADFR, BLNP	

Inclusive models differ significantly!

Hybrid MC: Putting the pieces together

- Inclusive models predict the total inclusive rate
- → We have to subtract the resonances

Hybrid Model

- \blacksquare $H_i = R_i + \omega_i N_i$, H_i : total, R_i : resonant, N_i : inclusive
- Calculate weights ω_i in the 3D phase space, so above equation holds
- Phase space bins

 - $m_X = [0., 1.4, 1.6, 1.8, 2., 2.5, 3., 3.5]$ $E_I^B = [0., 0.5, 1., 1.25, 1.5, 1.75, 2., 2.25, 3.]$ $q^2 = [0., 2.5, 5., 7.5, 10., 12.5, 15., 20., 25.]$

The DFN Hybrid

Summary

- Improvement of B \rightarrow V $\ell\nu$, V = { π, ρ, ω } Predictions
 - There is currently some work on the way for a new theory calculation for the LCSR predictions.
 - lacksquare ightarrow form factors can be updated
 - Written reference soon available.
- Hybrid MC
 - I plan to write a confluence page which describes the procedure in detail.
- There will be software available soon to determine systematic uncertainties automatically.