Parton branching TMD distributions from fits to DIS precision data

Sara Taheri Monfared¹, Francesco Hautmann², Hannes Jung¹, Melanie Viola Schmitz¹

¹Deutsches Elektronen-Synchrotron DESY

²University of Antwerp

DIS 2019-Turin

Sara Taheri Monfared (DESY)

Parton branching TMD

DIS 2019-Turin 1 / 23

Outline

Why TMDs are needed?

- What are TMDs?
- Why TMDs?

New developments

- How to solve DGLAP evolution with PB method?
- Parton Branching method

3 Determination of TMD densities at LO from HERA DIS data

- PDFs from PB method: fit to HERA data
- Improved ordering dynamic z_M
- Extension to include small-x processes

TMDs (Transverse Momentum Dependent parton distribution)

- \rightarrow at very small k_t
- typically for small k_t in DY production, or semi-inclusive DIS (CS, CSS, ...)
- \rightarrow at very small x
- essentially only gluon densities (CCFM, BFKL, ...)

new approach: Parton Branching Method

• \rightarrow cover all transverse momenta from small k_t to large k_t as well as large range in x and μ^2 .

Why TMDs?

- NLO-dijet with collinear POWHEG cannot describe small $\Delta\phi$
- ullet NLO-dijet with TMD POWHEG describes spectrum at small and large $\Delta\phi$
- Region of higher order emissions described by TMDs. This approach gives further insights and improves the description of jet production.

Sara Taheri Monfared (DESY)

Parton branching TMD

How to determine TMDs?

Transverse momentum effects are naturally coming from

- intrinsic k_t
- parton shower

Determine integrated PDFs form PB solution of evolution equation:

- at LO, NLO and NNLO
- advantages of PB method

Determine TMD:

 since each branching is generated explicitly, energy-momentum conservation is fulfilled and transverse momentum distributions can be obtained.

How to solve DGLAP evolution with PB method?

• differential form of the DGLAP:

$$\mu^2 \frac{\partial}{\partial \mu^2} f(x,\mu^2) = \int \frac{dz}{z} \frac{\alpha_s}{2\pi} \mathcal{P}_+(z) f(\frac{x}{z},\mu^2)$$

sudakov FF

$$\Delta_{s}(\mu^{2}) = \exp\left(-\int^{z_{M}} dz \int^{\mu^{2}}_{\mu^{2}_{0}} \frac{\alpha_{s}}{2\pi} \frac{d\mu^{\prime 2}}{\mu^{\prime 2}} \mathcal{P}(z)\right)$$

• DGLAP eq. in the form including the Δ_s

$$\mu^{2} \frac{\partial}{\partial \mu^{2}} \frac{f(x, \mu^{2})}{\Delta_{s}(\mu^{2})} = \int \frac{dz}{z} \frac{\alpha_{s}}{2\pi} \frac{\mathcal{P}(z)}{\Delta_{s}(\mu^{2})} f(\frac{x}{z}, \mu^{2})$$

Parton Branching method

• integral form with a very simple physical interpretation:

$$f(x,\mu^{2}) = f(x,\mu_{0}^{2})\Delta_{s}(\mu^{2}) + \int \frac{dz}{z} \frac{d\mu'^{2}}{\mu'^{2}} \cdot \frac{\Delta_{s}(\mu^{2})}{\Delta_{s}(\mu'^{2})} P^{R}(z)f(\frac{x}{z},\mu'^{2})$$

 \sim

k_{t,i+1}

k_{t.i}

مممه

9t.i

 $z_i = x_{i+1}/x_i$

• solve integral equation via iteration:

$$f_{0}(x,\mu^{2}) = f(x,\mu_{0}^{2}) \Delta_{s}(\mu^{2})$$

$$f_{1}(x,\mu^{2}) = f(x,\mu_{0}^{2}) \Delta_{s}(\mu^{2})$$

$$+ \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \frac{\Delta_{s}(\mu^{2})}{\Delta_{s}(\mu'^{2})} \int \frac{dz}{z} P^{R}(z) f(x/z,\mu_{0}^{2}) \Delta(\mu'^{2})$$

iterate with second branching and so on to get the full solution

Sara Taheri Monfared (DESY)

Evolution equation and parton branching method

• use momentum weighted PDFs with real emission probability

$$\begin{aligned} \mathsf{x}f_{a}(x,\mu^{2}) &= \Delta_{a}(\mu^{2})\mathsf{x}f_{a}(x,\mu_{0}^{2}) \\ &+ \sum_{b} \int_{\mu_{0}^{2}}^{\mu^{2}} \frac{d\mu'^{2}}{\mu'^{2}} \frac{\Delta_{s}(\mu^{2})}{\Delta_{s}(\mu'^{2})} \int_{x}^{z_{M}} dz \ P_{ab}^{R}(\alpha_{s}(t'),z) \ \frac{x}{z} \ f_{b}(x/z,\mu^{2}) \end{aligned}$$

- z_M introduced to separate real from virtual and non-resolvable branching
- reproduces DGLAP up to $\mathcal{O}(1-z_M)$
- associate the evolution scale with some physical interpretation

• set1
$$\rightarrow \alpha_s(\mu_i^2)$$

• set2 $\rightarrow \alpha_s((1-z_i)^2\mu_i^2)$

check what the dependence of this different choice is

A. Bermudez Martinez, P. Connor, F. Hautmann, H. Jung, A. Lelek, V. Radescu and R. Žlebčík, arXiv:1804.11152 [hep-ph].

PDFs from PB method: fit to HERA data

Convolution of kernel with starting distribution

$$\begin{aligned} xf_{a}(x,\mu^{2}) &= x \int dx' \int dx'' \mathcal{A}_{0,b}(x') \, \tilde{\mathcal{A}}_{a}^{b}(x'',\mu^{2}) \, \delta(x'x''-x) \\ &= \int dx' \, \mathcal{A}_{0,b}(x') \cdot \frac{x}{x'} \, \tilde{\mathcal{A}}_{a}^{b}(\frac{x}{x'},\mu^{2}) \end{aligned}$$

Fit performed using xFitter frame in \mbox{LO} to investigate the small-x corrections to splitting functions (CCFM)

- Full coupled-evolution with all flavors
- using full HERA 1+2 inclusive DIS (neutral current, charged current) data
- in total 1145 data points
- $3.5 < Q^2 < 50000 \text{ GeV}^2 \& 4.10^{-5} < x < 0.65$

Can be easily extended to include any other measurement for fit.

A. Bermudez Martinez, P. Connor, F. Hautmann, H. Jung, A. Lelek, V. Radescu and R. Žlebčík, arXiv:1804.11152 [hep-ph].

Standard LO full fit with different scale in α_s

- Very different gluon distribution obtained at small Q²
- The differences are wash out at higher Q^2

Fit to DIS x-section at LO: F_2

How well can we describe F_2 with the two sets at LO?

Sara Taheri Monfared (DESY)

Parton branching TMD

- At the moment all our fits are with $z_M = 1 \frac{q_0}{q}$ and q_0 is chosen to be $q_0 = 0.01 \text{ GeV}^2$.
- Soft gluon resolution scale is chosen to be very small to make sure that the collinear evolution coincides with the standard DGLAP evolution.
- We study the z_M dependence with q_0 to suppress the soft gluons
- Generate LO kernels at larger q_0 and perform LO fits.

Studying the effect of different q_0 on PDFs

- Perform LO fit to all HERA data
- Full evolution with all flavors
- Change q₀
- At large q₀, we remove quite a lot of soft gluons so we do not have appropriate fit.

$$\begin{array}{l} q_0 = 0.01 \rightarrow \chi^2/dof = 1.263 \\ q_0 = 0.1 \rightarrow \chi^2/dof = 1.405 \\ q_0 = 0.5 \rightarrow \chi^2/dof = 1.538 \\ q_0 = 0.8 \rightarrow \chi^2/dof = 1.824 \end{array}$$

Different q_0 in fit

Sara Taheri Monfared (DESY)

Parton branching TMD

DIS 2019-Turin 14 / 2

Checking q_{min} dependence

- Fits performed for different q_{min} while $q_0 = 0.5 \text{ GeV}^2$
- The larger q_{min} , the smaller χ^2/dof .
- If we go to higher q², we get again a reasonable fit.
 We just sum up the large enough number of soft gluons

Sara Taheri Monfared (DESY)

Parton branching TMD

DIS 2019-Turin

Extension to include small-x processes

- Enlarging the phase space to include full angular ordering
 - DGLAP ordering: $q_i > q_{i-1}$
 - Full angular ordering: $q_i > z_{i-1}q_{i-1}$
- Opening up the phase space in DGLAP scenario $(k_t < q)$, we get larger k_t emission $(k_t > q)$. Then, we get an enhancement at small-x.
- We need the additional non-sudakov FF which suppresses the growth in small-x region.
- CCFM splitting functions at LO including the non-sudakov FF

$$\begin{split} P_{gg}^{(0)} &= 6\left(\frac{\alpha_s}{2\pi}\right)\left(\frac{1}{z}\widetilde{\Delta}_{ns} + \frac{1}{1-z} + ...\right)\widetilde{\Delta}_s \\ P_{gq}^{(0)} &= \frac{4}{3}\left(\frac{\alpha_s}{2\pi}\right)\left(z - 2 + \frac{2}{z}\widetilde{\Delta}_{ns}\right)\widetilde{\Delta}_s \qquad \widetilde{\Delta}_s = \exp\left(-\int_{z_{i-1}q_{i-1}}^{q_i} \frac{dq'^2}{q'^2}\int^{z_M} dz \; \frac{1}{1-z}\right) \\ P_{qg}^{(0)} &= \frac{1}{2}\left(\frac{\alpha_s}{2\pi}\right)\left(z^2 + (1-z)^2\right)\widetilde{\Delta}_s \qquad \widetilde{\Delta}_{ns} = \exp\left(-\int_{z_{i-1}q_{i-1}}^{k_t} \frac{dq'^2}{q'^2}\int^{z_M} dz \; \frac{1}{z}\right) \\ P_{q;q_i}^{(0)} &= \frac{4}{3}\left(\frac{\alpha_s}{2\pi}\right)\left(\frac{1+z^2}{1-z}\right)\widetilde{\Delta}_s \\ S. Catani, F. Fiorani and G. Marchesini, Nucl. Phys. B 336, 18 (1990). \end{split}$$

Small-x corrections to splitting functions (CCFM)

- Original CCFM includes only gluon splitting function with the singular term.
- We re-write CCFM with the full splitting function into the sudakov as we do for DGLAP.
- Δ_{ns} acts only if k_t > q_i because the other region k_t < q_i is already covered by the sudakov in PB approach.
- Only for P_{gg} and P_{gq} splitting function.

$$\begin{split} \widetilde{\Delta}_{s} \to \Delta_{s} &= \exp\left(-\int_{z_{i-1}q_{i-1}}^{q_{i}} \frac{dq'^{2}}{q'^{2}} \int^{z_{M}} dz \left(\frac{1}{z} + \frac{1}{1-z} + ...\right)\right) \\ \widetilde{\Delta}_{ns} \to \Delta_{ns} &= \exp\left(-\int_{q_{i}}^{k_{t}} \frac{dq'^{2}}{q'^{2}} \int^{z_{M}} dz \frac{1}{z}\right) \quad \text{for } k_{t} > q_{i} \\ \widetilde{\Delta}_{ns} \to \Delta_{ns} &= 1 \quad \text{for } k_{t} < q_{i} \end{split}$$

How much do the PDFs would change in small-x region by including the Δ_{ns} for k_t > q_i?

Gluon distribution

- This is not a fit!
- QCDNUM agrees with PB method in the DGLAP limit.
- Red curve: opening up the phase space to include angular ordering. enhancement at small x, essentially below 10⁻³.
- With angular ordering we need some extra piece which covers the no branching probability from q_i to k_t which is not covered in the DGLAP.

- PB method to solve DGLAP equation at LO, NLO, NNLO
- Advantages of PB method
- LO fit with coupled CCFM evolution equation based on PB solution for all flavors
- Reasonable χ^2/dof
- The effect of suppressing soft gluons with different z_M is studied
- Small-x corrections included to the DGLAP splitting function (CCFM)

Thank you for your attention

Backup

æ

< □ > < □ > < □ > < □ > < □ >

Gluon

Sara Taheri Monfared (DESY)

Parton branching TMD

DIS 2019-Turin 22 /

æ

Quark

Sara Taheri Monfared (DESY)

Parton branching TMD

DIS 2019-Turin 23 /

æ