Parton Shower based on TMD parton distributions

Melanie Viola Schmitz ¹, Francesco Hautmann ², Hannes Jung ¹, Sara Taheri Monfared ¹

¹Deutsches Elektronen-Synchrotron (DESY) ²University of Antwerp

DIS 2019, Turin

Parton shower based on TMDs

- 2 The TMD parton shower and its applications
- 3 Obtaining TMDs from two different parton showers
- 4 Detailed study of the TMD parton shower

5 Conclusion

• The parton branching method is a way to solve the DGLAP equations

- The parton branching method is a way to solve the DGLAP equations
- For this method the **Sudakov form factor** is defined:

$$\Delta_{s}(t) = \exp\left(-\int_{x}^{z_{max}} \mathrm{d}z \int_{t_{0}}^{t} \frac{\alpha_{s}}{2\pi} \frac{\mathrm{d}t'}{t'} \tilde{P}(z)\right)$$

- The parton branching method is a way to solve the DGLAP equations
- For this method the **Sudakov form factor** is defined:

$$\Delta_{s}(t) = \exp\left(-\int_{x}^{z_{max}} \mathrm{d}z \int_{t_{0}}^{t} \frac{\alpha_{s}}{2\pi} \frac{\mathrm{d}t'}{t'} \tilde{P}(z)\right)$$

• with the Sudakov form factor, a general form of the evolution equation in a form using the Sudakov form factor can be derived $(t = \mu^2)$:

$$t\frac{\partial}{\partial t}\frac{f(x,t)}{\Delta_s} = \int \frac{\mathrm{d}z}{z}\frac{1}{\Delta_s}\frac{\alpha_s}{2\pi}P(z)f\left(\frac{x}{z},t\right)$$

- The parton branching method is a way to solve the DGLAP equations
- For this method the **Sudakov form factor** is defined:

$$\Delta_{s}(t) = \exp\left(-\int_{x}^{z_{max}} \mathrm{d}z \int_{t_{0}}^{t} \frac{\alpha_{s}}{2\pi} \frac{\mathrm{d}t'}{t'} \tilde{P}(z)\right)$$

• with the Sudakov form factor, a general form of the evolution equation in a form using the Sudakov form factor can be derived $(t = \mu^2)$:

$$t\frac{\partial}{\partial t}\frac{f(x,t)}{\Delta_{s}} = \int \frac{\mathrm{d}z}{z}\frac{1}{\Delta_{s}}\frac{\alpha_{s}}{2\pi}P(z)f\left(\frac{x}{z},t\right)$$

Integration leads to:

$$f(x,t) = f(x,t_0)\Delta(t) + \int \frac{\mathrm{d}t'}{t'} \frac{\Delta(t)}{\Delta(t')} \frac{\alpha_s(t')}{2\pi} \int \frac{\mathrm{d}z}{z} P(z) f\left(\frac{x}{z},t'\right)$$

solve it by iteration

Melanie Schmitz (DESY)

$$f_{0}(x,t) = f(x,t_{0})\Delta(t)$$

$$f_{1}(x,t) = f(x,t_{0})\Delta(t) + \frac{\alpha_{s}}{2\pi}\int_{t_{0}}^{t}\frac{dt'}{t'}\frac{\Delta(t)}{\Delta(t')}$$

$$\cdot\int_{x}^{1}\frac{dz}{z}\tilde{P}(z)f(x/z,t_{0})\Delta(t')$$

$$= f(x,t_{0})\Delta(t) + \log\frac{t}{t_{0}}A \otimes \Delta(t)f(x/z,t_{0})$$

Image: A math a math

$$f(x,t) = \lim_{n \to \infty} f_n(x,t) = \lim_{n \to \infty} \sum_n \frac{1}{n!} \log^n \left(\frac{t}{t_0}\right) A^n \otimes \Delta(t) f\left(\frac{x}{z}, t_0\right)$$

with $A = \int \frac{dz}{z} \tilde{P}(z) \longrightarrow$ resummed to all orders in $\alpha_s \log t$

э

 \rightarrow kinematics of every single splitting process can be treated exactly

What is the gain of the parton branching method?

What is the gain of the parton branching method?

PB evolution

starts at hadron scale μ_0^2 and evolves from small to large μ^2

Parton shower

backward evolution from hard scale μ^2 to hadron scale μ^2_0

What is the gain of the parton branching method?

PB evolution

starts at hadron scale μ_0^2 and evolves from small to large μ^2

Parton shower

backward evolution from hard scale μ^2 to hadron scale μ^2_0

 \rightarrow PB method allows to determine TMDs

What is the gain of the parton branching method?

PB evolution

starts at hadron scale μ_0^2 and evolves from small to large μ^2

Parton shower

backward evolution from hard scale μ^2 to hadron scale μ^2_0

- \rightarrow PB method allows to determine TMDs
- \rightarrow PB method allows to construct parton shower following exactly TMD

What is the gain of the parton branching method?

PB evolution

starts at hadron scale μ_0^2 and evolves from small to large μ^2

Parton shower

backward evolution from hard scale μ^2 to hadron scale μ^2_0

- \rightarrow PB method allows to determine TMDs
- \rightarrow PB method allows to construct parton shower following exactly TMD

TMD parton shower (implemented in CASCADE 3):

What is the gain of the parton branching method?

PB evolution

starts at hadron scale μ_0^2 and evolves from small to large μ^2

Parton shower

backward evolution from hard scale μ^2 to hadron scale μ^2_0

- \rightarrow PB method allows to determine TMDs
- \rightarrow PB method allows to construct parton shower following exactly TMD

TMD parton shower (implemented in CASCADE 3):

requires a TMD, depending on the transverse momentum of the propagator

Melanie Schmitz (DESY)

How can this TMD parton shower be applied?

How can this TMD parton shower be applied?

 \rightarrow POWHEG+TMD+PS gives very good description & MC@NLO+TMD fits reasonable

How can this TMD parton shower be applied?

 \rightarrow POWHEG+TMD+PS gives very good description & MC@NLO+TMD fits reasonable But how does it look like in detail?

How can this TMD parton shower be applied?

 \rightarrow POWHEG+TMD+PS gives very good description & MC@NLO+TMD fits reasonable

But how does it look like in detail?

How well does the parton shower really reproduce the TMDs?

How can this TMD parton shower be applied?

 \rightarrow POWHEG+TMD+PS gives very good description & MC@NLO+TMD fits reasonable

But how does it look like in detail?

How well does the parton shower really reproduce the TMDs?

Melanie Schmitz (DESY)

Melanie Schmitz (DESY)

э

Image: A matrix and a matrix

• define a **simple toy process** with a fixed *x* for one incoming parton, from which one can easily calculate kinematics of the other incoming parton, just using 4-vectors

- define a **simple toy process** with a fixed *x* for one incoming parton, from which one can easily calculate kinematics of the other incoming parton, just using 4-vectors
- fix $x_1=0.98$ with no intrinsic k_{\perp} and no PS from this incoming parton

- define a **simple toy process** with a fixed *x* for one incoming parton, from which one can easily calculate kinematics of the other incoming parton, just using 4-vectors
- fix $x_1=0.98$ with no intrinsic k_{\perp} and no PS from this incoming parton

- define a **simple toy process** with a fixed *x* for one incoming parton, from which one can easily calculate kinematics of the other incoming parton, just using 4-vectors
- fix $x_1=0.98$ with no intrinsic k_{\perp} and no PS from this incoming parton

Technical details:

• generate hard process (PYTHIA) and "add" TMD and PS (CASCADE 3)

- define a **simple toy process** with a fixed *x* for one incoming parton, from which one can easily calculate kinematics of the other incoming parton, just using 4-vectors
- fix $x_1=0.98$ with no intrinsic k_{\perp} and no PS from this incoming parton

Technical details:

- generate hard process (PYTHIA) and "add" TMD and PS (CASCADE 3)
- analyse events, calculate kinematics, determine effective TMD

Melanie Schmitz (DESY)

PDF set PYTHIA

hard process is generated with PYTHIA using:

- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set1
- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set2

TMD PDF set CASCADE

 k_{\perp} is "added" by CASCADE 3 using:

- PB-NLO-HERAI+II-2018-set1
- PB-NLO-HERAI+II-2018-set2

PDF set PYTHIA

hard process is generated with PYTHIA using:

- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set1
- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set2

TMD PDF set CASCADE

 k_{\perp} is "added" by CASCADE 3 using:

- PB-NLO-HERAI+II-2018-set1
- PB-NLO-HERAI+II-2018-set2

Difference between set1 & set2: set1 $\rightarrow \alpha_s (\mu^2)$, set2 $\rightarrow \alpha_s ((1-z)^2 \mu^2)$

PDF set PYTHIA

hard process is generated with PYTHIA using:

- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set1
- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set2

TMD PDF set CASCADE

 k_{\perp} is "added" by CASCADE 3 using:

- PB-NLO-HERAI+II-2018-set1
- PB-NLO-HERAI+II-2018-set2

Difference between set1 & set2: set1 $\rightarrow \alpha_s (\mu^2)$, set2 $\rightarrow \alpha_s ((1-z)^2 \mu^2)$

 \rightarrow set1 integrated over k_{\perp} is just collinear PDF - this is not the case for set2!

PDF set PYTHIA

hard process is generated with PYTHIA using:

- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set1
- LHAPDF6:PB-TMDNLO-HERAI+II-2018-set2

TMD PDF set CASCADE

 k_{\perp} is "added" by CASCADE 3 using:

- PB-NLO-HERAI+II-2018-set1
- PB-NLO-HERAI+II-2018-set2

Difference between set1 & set2: set1 $\rightarrow \alpha_s (\mu^2)$, set2 $\rightarrow \alpha_s ((1-z)^2 \mu^2)$

- \rightarrow set1 integrated over k_{\perp} is just collinear PDF this is not the case for set2!
- \rightarrow choose three different combinations of the collinear and TMD PDF sets to check consistency with the input TMDs

"test"=calculated distribution

PYTHIA: PB-TMDNLO-HERAI+II-2018-set1 CASCADE: PB-NLO-HERAI+II-2018-set1

Melanie Schmitz (DESY)

• • • • • • • • • • • •

"test"=calculated distribution

PYTHIA: PB-TMDNLO-HERAI+II-2018-set1 CASCADE: PB-NLO-HERAI+II-2018-set1 PYTHIA: PB-TMDNLO-HERAI+II-2018-set2 CASCADE: PB-NLO-HERAI+II-2018-set2

DIS 2019, Turin 9 / 20

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

"test"=calculated distribution

PYTHIA: PB-TMDNLO-HERAI+II-2018-set1 CASCADE: PB-NLO-HERAI+II-2018-set1

PYTHIA: PB-TMDNLO-HERAI+II-2018-set2 CASCADE: PB-NLO-HERAI+II-2018-set2 PYTHIA: PB-TMDNLO-HERAI+II-2018-set1 CASCADE: PB-NLO-HERAI+II-2018-set2

(I) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1)) < ((1))

"test"=calculated distribution

PYTHIA: PB-TMDNLO-HERAI+II-2018-set1 CASCADE: PB-NLO-HERAI+II-2018-set1

PYTHIA: PB-TMDNLO-HERAI+II-2018-set2 CASCADE: PB-NLO-HERAI+II-2018-set2

PYTHIA: PB-TMDNLO-HERAI+II-2018-set1 CASCADE: PB-NLO-HERAI+II-2018-set2

Image: A math a math

- \rightarrow reconstruction of differences between set1 & set2
- \rightarrow consistent use of collinear and TMD PDF set essential!

Melanie Schmitz (DESY)

Parton shower based on TMDs

DIS 2019, Turin 9 / 20

TMD parton shower: TMD vs. x and k_{\perp}

How does it look like when **PS is added**? (set1 above, set2 below)

"test"=calculated distribution

- PS does not change the kinematics!
- method can be used to determine TMDs from the shower

Melanie Schmitz (DESY)

TMD from P8 PS: TMD vs. k_{\perp}

 $\mathsf{x} \mathsf{A}(\mathsf{x},\mathsf{k},\mu)$ PRINI CLHERALLIL 2018-set gluon, $x = 0.01, \mu = 1000 \, GeV$ How does it look like for $rA(x, k_t, \mu)$ 10-1 angular ordering 10-1 the PYTHIA PS? 10-2 10^{-2} 10 (set1 above, set2 below) 10^{-3} MDplotter 2.2. 10- 10^{-4} 10-10-5 "test"=calculated distribution $\begin{array}{c} z_M = 1 - 10^{-3} \\ z_M = 1 - 10^{-5} \\ z_M = 1 - 10^{-8} \end{array}$ 10 10^{-6} 10^{-7} 0.5 10^{2} 10 10 102 k. (GeV) gluon, x = 0.01, µ = 100 GeV differences observed $A(x,k,\mu)$ PB-NLO-HERAI+II-2018-set since P8 PS uses gluon, $x = 0.01, \mu = 1000 \, GeV$ 10 $cA(x, k_t, \mu)$ p_T-ordering p_T ordering 10 10^{-1} 10^{-2} 10 • TMDs can be 10-3 10determined from any 10-4 10 10^{-5} parton shower $z_M = 1 - 10^{-3}$ $z_M = 1 - 10^{-5}$ $z_M = 1 - 10^{-8}$ 10 10^{-6} 10^{-1} 10^{-8} 10 10^{2} 10

aluon, x = 0.01, u = 100 GeV

Melanie Schmitz (DESY)

Parton shower based on TMDs

k [GeV]

DIS 2019, Turin

103

 10^{3}

 $k_t [GeV]$

11 / 20

 $k_t [GeV]^{10^4}$

iTMD vs. x for both showers

How do the integrated densities vs. x look like for both showers? (set1 above, set2 below) "test"=calculated distribution

 \rightarrow integration over k_{\perp} gives back collinear PDF for both showers

Parton shower based on TMDs

DIS 2019, Turin

• the propagator partons in the PS are investigated

- the propagator partons in the PS are investigated
- the emitted partons of the IPS are ordered in rapidity to reconstruct the history of particle evolution (backward evolution)

- the propagator partons in the PS are investigated
- the emitted partons of the IPS are ordered in rapidity to reconstruct the history of particle evolution (backward evolution)

• for every propagator the transverse momentum and the momentum fraction are calculated

- the propagator partons in the PS are investigated
- the emitted partons of the IPS are ordered in rapidity to reconstruct the history of particle evolution (backward evolution)

- for every propagator the transverse momentum and the momentum fraction are calculated
- the scales are equal to the rescaled transverse momenta of the emitted partons, $q_i = \frac{p_{ti}}{1-z_i}$

Melanie Schmitz (DESY)

DIS 2019, Turin 13 / 20

TMD parton shower: TMD vs. k_{\perp} and iTMDs

• method described to determine TMDs from final state

- \rightarrow prove of concept using TMDs
- \rightarrow distributions exactly reproduced

- method described to determine TMDs from final state
 - \rightarrow prove of concept using TMDs
 - \rightarrow distributions exactly reproduced
- advantage of concept of TMD: PS does not change kinematics

- method described to determine TMDs from final state
 - \rightarrow prove of concept using TMDs
 - \rightarrow distributions exactly reproduced
- advantage of concept of TMD: **PS does not change kinematics**
- method applied to standard PS MC
 - ightarrow PYTHIA
 - \rightarrow differences in TMD distributions to PB observed

- method described to determine TMDs from final state
 - \rightarrow prove of concept using TMDs
 - \rightarrow distributions exactly reproduced
- advantage of concept of TMD: **PS does not change kinematics**
- method applied to standard PS MC
 - ightarrow PYTHIA
 - \rightarrow differences in TMD distributions to PB observed
- method applied to first propagator in the TMD PS
 - \rightarrow TMDs can be obtained

- method described to determine TMDs from final state
 - \rightarrow prove of concept using TMDs
 - \rightarrow distributions exactly reproduced
- advantage of concept of TMD: **PS does not change kinematics**
- method applied to standard PS MC
 - ightarrow PYTHIA
 - \rightarrow differences in TMD distributions to PB observed
- method applied to first propagator in the TMD PS
 - \rightarrow TMDs can be obtained

This is the first time that parton densities are reconstructed from the shower history!

Thank you for your attention

BACKUP

Melanie Schmitz (DESY)

Parton shower based on TMDs

DIS 2019, Turin 17 / 17

æ

- full hadron level Monte Carlo event generator for ep, γp and $p\bar{p}$ and pp processes
- previously intended for small-x processes, now extended for all x and all k_{\perp}
- uses TMD ... and TMD shower
- hadronisation is performed using the Lund string fragmentation implemented in PYTHIA

- two main sets of data provide the experimental information on TMDs: DIS at high energy, and low- q_T Drell Yan and semi-inclusive DIS
- for collinear and TMD distributions the factorization theorems are different and hence also the evolution equations
- TMDs can be obtained for example from the parton branching method with CCFM or DGLAP evolution equation
- \bullet some observables can not be predicted with collinear factorization \to example given by Drell-Yan Z-boson production

Hannes Jung et. al.(2010)

The CCFM Monte Carlo generator CASCADE 2.2.0 *Eur.Phys.J.C70*:1237-1249, 2010

Marcin Bury et. al.(2017)

Calculations with off-shell matrix elements, TMD parton densities and TMD parton showers

arXiv:1712.05932 [hep-ph], 2017

F. Hautmann, H. Jung, A. Lelek, V. Radescu, R. Zlebcik (2017) Collinear and TMD Quark and Gluon Densities from Parton Branching Solution of QCD Evolution Equations

arXiv:1708.03279 [hep-ph], 2017