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@D Introduction

Microscopes are basic devices for experiments in science,
such as accelerators in particle physics.

What are “microscopes” in gravity ?

= One answer iIs Holography !
(AdS/CFT, gauge/gravity duality)

Holography iIs not a real experiment but provides a useful
device in thought experiments of quantum gravity.

Indeed, holography magnifies a gravitational spacetime
Into tiny bits of quantum information.



Bekentein-Hawking Formula of BH Entropy

3
Kg - C

S.. =
4G, R

- Area(Horizon). » BH thermodynamics !

A= Surface Area of Black hole = Geometry
GN=Newton constant = Gravity Quantum

h=Planck constant = Quantum Mechanics [ Gravity!
kB=Boltzmann constant = Stat.Mech./Infornjation

BH Entropy is proportional to the area, not the volume!

m) Degrees of Freedom in Gravity o< Surface Area !



» The idea of holographic principle !

['t Hooft 1993, Susskind 1994]

Bdy of M
Holography i

Quantum Matter on oM

Gravity on M

: N E :
Gravity = = ;
D |-
D

BH entropy(ccArea)= Thermal Entropy of Matter (c<Volume)

[String theory derivation of BH entropy: Strominger-Vafa 1996]



The best example of holography in string theory:

AdS/CFET Correspondence |y.igacena 19971

AdS/CFT

Gravity (String theory) Conformal Field

on D+1dim. AdS — Theory (CFT) on
(anti de-Sitter space) D dim. spacetime

‘ Classical limit CFT=Massless QFT
Large N + Strong coupling
General relativity Strongly interacting
with A<O Quantum Field Theories

Basic Principle i v
(Bulk-Boundary relation) : Gravity — < CFT



Gravity In
Anti de-Sitter space (CETs)
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: N

Closed Strings N5 —0Open Strings
O o | | /// ¥

Conformal Field Theories

SU(N) gauge
Nt theories

Bdundary ;Equivalent

/7‘ AdS/CFT
>/
‘ds2 =R
Z {4
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Thermodynamics of “ Thermodynamics
Black holes (branes) of various materials
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d
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However, the AdS/CFT has been a conjecture
for more than 20 years, without any definite proof,
In spite of so many evidences and successful checks.

Recent developments strongly suggest that

INn order to understand basic mechanisms how the
AdS/CFT works, quantum information theoretical
Ideas play crucial roles.

Quantum entanglement in quantum systems (CFT)
= Emergent Geometry of Anti de-Sitter spacetime
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® Quantum Entanglement and AdS/CFT

(2-1) Quantum Entanglement (QE)

QE = quantum correlations between two subsystems

Simple example: 2 Qubits system

(1) Direct Product State

‘\PC>: T>A®‘\L>B ‘ * El:llft);ngled

(2) EPR (Bell) States

‘\P> (q > ®M +M ®‘T * * » Entangled

EPR Pair




Entanglement Entropy (EE)

Entanglement

Amount of QE = # of EPR Pairs Entropy (EE)

First we decompose the Hilbert space: H,=H,®H,; .

Example : Spin-chain A B
AN Y,

H—H—o—c—o—tﬂg—o—o—o—;m

We introduce the reduced density matrix O,

|

The entanglement entropy (EE) S , is defined by

S,=-Tr[p,logp,]

by tracingoutB p, :TrBﬂ‘P ><‘P

fot fot




(2-2) Holographic Entanglement Entropy (HEE)

[Ryu-Takayanagi 2006, Hubeny-Rangamani-Takayanagi 2007]

EE in CFT can be computed from

the minimal area surface I'A: Entanglement
Wedge
G ~ [Area(ly) / ,
4 — mMin
FA 4GN FA

Note: The bdy of I'A =The bdy of A.

Many evidences for this conjecture
have been found for more than 10 years. B

This formula was proved by

Lewkowycz-Maldacena 2013 based CFTjon — G raVity
on the bulk-bdy relation of AdS/CFT. boupdary  (AdS)




@ Entanglement Wedges in AdS/CFT
Definition of Entanglement Wedges

Which bulk region is dual to a given region A in CFT ?
= Entanglement Wedge (EW) Ma
MA = A region surrounded by A and I'A

P In CFT (Low energy info)
& pua 1IN AASgravity

Minimal

Surface [Hamilton-Kabat-Lifschytz-Lowe 2006, Czech-
Karczmarek-Nogueira-Raamsdonk 2012, Wall
2012, Headrick-Hubeny-Lawrence-Rangamani
2014, Jafferis-Lewkowycz-Maldacena-Suh 2015,
Dong-Harlow-Wall 2016, . . . ]

Boundary of AdS



Covariant Definition of EW

Entanglement Wedge
=Domain of dependence
of MA

extremal
surface

Though we assume static setups in this talk,
we extend to non-static setups In a covariant way.



EW for Disconnected Subregions

I(A:B)=S,+S, ~S,, =0

MAB=MAUMB, IT’'aB=TAUTIB I(A:B)>0



Entanglement Wedge Cross Section

Define the EWW cross section:

DSS Sectio

Recently, this quantity is conjectured to be
dual to a quantity called entanglement of purification.

T
— Minimum of entanglement entropy
EW ('OAB) E P ('OAB) when we purify the mixed state pAB

[Umemoto-TT 2017, Nguyen-Devakul-Halbasch-Zaletel-Swingle 2017,
Explicit Checks from CFT calculations: Caputa-Miyaji-Umemoto-TT 2018]

[Classical correlation enhancement in EoP: Bhattacharyya-Jahn-Umemoto-TT 2019]




@ Derivation of Entanglement Wedges from CFTs
(4-1) Our Setup

Consider locally excited states in 2d CFTs:

( ))=0( )[0) !T(" :
Y(w, o(w, 0
w,w w, w

O(w,w). Aprimaryin 2d CFT  —
with conformal dim. h

o
w=x + it € complex plane R* o(w,w)

By tracing out the subsystem B, we obtain the reduced
density matrix: | p, (w, w) =Trp [0(w, )|0)(0|0" (w, w)]
We will study the w-dependence of pa(w,w) .




Gravity Dual of p,(w,w) =Trg [0(w)|0)(0|0T (w)]

O (W’P

Bounda
Ow)

A
<P

S U ACHS

We always assume
l<<h<<c

Geodesic Approximatio
enough localization)

Negligible
P Back-reactions

O 96 T=0time slice

PA may be sensitive to O(w) but not to O(w’).



(4-2) Information Metric
PA is sensitive to O(w)

< We can distinguish pa(w) and pA(W’) If w+w'.

To study distinguishability of quantum states, consider
the Bures distance between density matrices p and p’.

Bures distance: Dg(p,p)* =2 — 2Tr|\/vPP' VP!
Fidelity

For pure states, this is simplified as
Dg (IWNW[, [W'XW']) * = 2(1 = (P[¥)]).



Assume density matrices depend on parameters Ai,

denoted by p(A). The Bures metric is defined as
follows:

ds? = Dg(p(N), p(A + dX)) * = G;;dAIdN

We can calculate Bures distance for

a locally excited pure state : |Y(w)) = 0(w,w)|0)
(dim=h primary)

D (¥ WP W), [FWHNPW)]) 2 = 2(1 — {EW) [P W))]).

[(EWIYWNI=Iw — w2 w’ = w2 [w —w'| 7.

Finally, we get Bures metric (note: w=x+it):

h The metric on a
2 _ 2 L d72) |
dsp = — (dx* + d7°) time slice of AdS !




Bures Info. Metric e« Metric in Gravity Dual \

O (w+dw
Ow)

Houndary
PP P’
O(w

O(w )

D(P,P’) = larger
= Easier to distinguish
Pand P’

Bulk AdS

O time slice

Bures metric for pure states is universal for any CFT !
= The situation largely changes for pA as we will see.



(4-3) Single Interval Reduced Density Matrices
Consider the reduced density matrix
pa(w,w) =Trg |0(w,w)|0)(0]07 (W, w)] .

We choose A to be an interval A=[0,L] on R?.
0 L
A
As a first step, let us start with the computation of a
simpler version of Fidelity (like ~2"d Renyi’):

/ Tr[pp’]
I(p,p) B — N 2
\/Tr[PZ]Tr[p’Z] Cf. 2—-Dg(p,p)
Ip.p)=1 o p=p". =2Tr[\/\/ﬁp’\/ﬁl

0 < I(p»p’) <1. [Introduced by Cardy 2014] Fidelity



The quantity I(p(w), p(w"))I1s given by a 4-pt function.

For holographic CFTs (=strongly coupled large ¢ CFT),

the large c (or large N) factorization property, shows
an emergence of sharp entanglement wedge !

® O, .ot

wow S Always I(p,p') =1
‘6" i 'L We cannot distinguish !

Wo o' 40N guish

Wedge: [w — L/2| < L/2

Outside
Wedge

Inside o8 e I(p,p’) = 0 except w=w’
Wedge Olﬂl L | We can distinguish !

WW






Wedge in CFT = Shadow of Entanglement Wedqge

“Shadow” of
Entanglement

lw—-L/2| <L/2

Bulk AdS

Geodesic

e slice




Plots of I(p(w).p(w’)) as a function of w’

Holographic CFT

(Strongly interacting) Free Scalar CFT
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Sharp Ew! EW isnotclear !

‘We get sharp EWs only for holographic CFTs'! ‘




(4-4) Bures Information Metric

We can also evaluate the Fidelity by taking
n=m=1/2 limit of A, = Tr[(pmp'pm)n]_

The Fidelity A1/21/2 = Tr[\/\/ﬁp'\/ﬁj behaves as the
previous quantity I(p, p') does in the single interval case.

Thus, fidelity (or Bures distance) reproduces correct EWSs.

The Bure metric is computed as

Inside wedge : dsg = T%(dx2 + dt?) »Agree with
Outside wedge : ds% = 0 EW geometry




(4-5) Double Interval Case

0 S |+s |+2s

Consider a subsystem A
which consists of two intervals.Al A2

In this case, two distinguishability measures

1. p") =—P21__ iy 1] /7Bp VP
JTrp]Tr[p"?] Fidelity (Bures)
predict two different wedges:

Wedge Wedge from Fidelity= EW in AdS/CFT

from I(p,p’)
/\

Disconnected EW Case Connected EW Case




Numerical Plots of Wedges from CFT
(i) Connected Phase (x=0.1)

w~10i

400 /’\-—'-T-—_A__-_T\ gosl f

tual EW

(i1) Disconnected Phase (k=0.2) Ac

W~3+2i ﬁ W~3+2] |
| |
00 ——




®) Conclusions

e The holographic counterpart of entanglement entropy is
given by minimal surface areas in AdS.

e The entanglement wedges provide a bulk counterpart of
a sub-region in a holographic CFT.

* We presented a new framework to derive the geometry of
entanglement wedges purely from CFTs.

e The Bures distance (Fidelity) correctly reproduces the
expected entanglement wedges, while the Renyi-like
distance J(p, p') leads to a slightly deformed wedges.

e The Bures information metric is proportional to the
metric of time slice of AdS. The same is true for BTZ.



Future Directions

 Why do wedges depend on the distance measures ?
Bures distance =probe only Low energy (code subspace)
I(p, p")~Tr[pp’'] =probe both low and high energy

e Other Information Distances ?
[ Trace distance, Quantum Fisher Metric,...]

e Quantum Corrections to EW ?

e Connection to Tensor Network interpretation of AdS/CFT ?
« Any hints for holography for de-Sitter spaces ?

e Any hints for a proof of AdS/CFT ?



Special thanks to Organizers
for this great workshop !
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Dieter Luest, MPP
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Earlier Justification of Entanglement Wedges

Usually, EW is explained by combining several ideas:

(1) HKLL Reconstruction (CFT dual of bulk fields)
[Hamilton-Kabat-Lifschytz-Lowe 06]

(2) Quantum Corrected HEE (or Hol. Relative entropy)
[Faulkner-Lewkowycz-Maldacena 13, Jafferis-Lewkowycz-Maldacena-Suh 15]

(3) Relation to Quantum Error Correcting Codes
[Almheri-Dong-Harlow 2014, Dong-Harlow-Wall 2016]

These arguments assume the AdS spacetime and its dynamics
from the beginning, based on AdS/CFT.

Our new argument in this talk is purely based on
on CFT computations. =EWs emerge from CFT !



1(p.p’) INn 2d Holographic CFTs

The 4-pt function F(z4, z,, 23, 2,) = ('E*dﬁ*o) IS

1 | - 1

given by applying the large N factorization:
F =~ |2y — 25| ™M zg — 2| ™" + |25 — 23|72 — 24| 7*".

4 . 4

‘Trivial Wick Contraction ‘ Non-Trivial
= Always I(p, p’) = 1 Wick Contraction

=»p=p. =1n general, I(p,p) < 1
(I.e. Indistinguishable)  (j e distinguishable)




Having in mind the information metric,

we take w = wW'.

[1] Case 1: the trivial Wick contraction is

dominant: |z —z3| <|zy—24| =>|WwW—-L/2| >L/2
w € Entanglement Wedge

pa(w)and p,(w") are indistinguishable !
Always we find I(p,p’)=1.

[11] Case 2: the non-trivial Wick contraction
is domiant: 122 — 23| >z4 —2z4] =[w—-L/2| <L/2
wE Entanglement Wedge

ps(w)and p,(w') are distinguishable !
l(p,p’)=1 only when w=w’".




Bures Metric in Holographic CFTs

We introduce 4,,,, = Tr[(p™p'p™)"].

We compute Bures metric via analytical continuation:

A 1 1= Tr[\/\/ﬁp’\/ﬁj.

n=ym=;
To evaluate Anm, consider the map:

k= = k=(2m+1
|Z _W—L’ —(IH )I)

(ONw)O(wo): - - ONwar_1)O(weg))- 2
[15 1 (01 (w2:-1)O(w2s)) - (Z D)% Q
An=3,m=1 — p |

[See also Lashkari 2014, 2015, Ugajin 2016 for relative entropy [ _##

An,m —

Z
p P



Trivial Wick Contraction (Outside EW: |w-L/2|>L/2)

(07(21)0(22) - - - O (222-1)O (221)) » A1/2,1/2=1
k k ’ ’
s H(OT(QQJ_1)0(523)> ks H ‘sz—l - Egj‘_dlh DB(p,p’):O
= = Trivial metric

Non-Trivial Contraction (Inside EW: |w-L/2|<L/2)

(OT(M)O(@“Q) -+ OV (208-1) O (221))

k
H (OF( (z25_2)0(225_1)) = H 7252 — ﬁgj—1|_4h’-
j=1 j=1

In the limit 7 — 1/2 and m — 1/2, this leads to

Al,’?,lf? ~ |’UJ o @|Qh|wf o @f|2h|wf o @|—4h

Re roduce
» P

dD3% ~ %(dmud#).
7 the tlme slice of AdS



Other examples of Bure Metrics in Hol.
CFTs

[1] Hol. CFT on Cylinder

Agrees with
2 2
(d7* + dx*) W opa) ads

2 _
dsi = (sinht)?

[2] Hol. CFT at Finite temp.

h(ZF/ﬁ)z Agrees with
dsp = 7 (d7T° +dx*)mp G?obal BTZ
(snZEe)’



Double Intervals Case

Consider the case where the subsystem A consists
of double intervals in 2d CFTs. We choose A as
A=A1UA2, Al1=[0,s] and A2=[l+s,l+2s].

Comformal Map: |, _ F(w) = [CONPICS) sn~1 (W, k2),

from a cpx plane 2 2K (k?)

with two slits  where we introduced

to a cylinder 9 / SN (G
[e.g. Rajabpour 2015] W= 7 1 ¥W=5=7%5 |, J(r7) = WK(l — x2)’

L dx {
):A \/(1—3:2)(1—fd:,gﬂsg)j " [+2s

The function sn=! (w0, x?) is the Jacobi elliptic function:

K (FLQ

i

e DR ¢ d
(@ )_/D A=) - i222)




Computation of Tripp’]




Relation to Quantum Error Correcting Codes

S

We can reconstruct the bulk information at P from Oppg.

But we cannot do so from O, Og,Oc -
» Property of Quantum Error Correcting Codes

Physical Space = all CFT states = quantum gravity

U
|Code Subspacel)= Low energy states in CFT = GR

Protected by QEC [Almheiri-Dong-Harlow 2014]




Einstein Equation from QE

First Law of EE [Casini-Huerta-Myers 2013,
Bhattachrrya-Nozaki-Ugajin-Takayanagi 2013 ]

ASA = AH A| [Ha=-logpA: Modular Hamiltonian]
. 4

(af ~8,-0. —I—"; AS,(t,x,1) = (0)(O)

' oo £ Tk

1
RW—ERgWJrAgW = T

/ HY . .
Kinetic term C.C. Matter contributions

» The 1st law of EE explains the perturbative Einstein eq.
[Raamsdonk et.al. 2013, Faulkner et.al 2013, 2017, Sarosi-Ugajin. 2017]



Definition of Entanglement of Purification

Consider all purifications |¥),z.5 of Pag in the

extended Hilbertspace: H, ®Hy; > H, QH; ®H; ®H:.

Entanglement of Purification (EoP) is defined by

Er(0as) = Min SAE\(I\P>A,Z\BI§)

All purifications | )of pag ‘

Org = Trﬂé"\PXLPH Entanglement Entropy

Note: E,(0,5) 20 and E (0x5) =0 pps =04 ® pg.
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