Neutrino Interactions with Matter

Kate Scholberg, Duke University, Workshop on Gravity, Information, and Fundamental Symmetries November 4, 2019

OUTLINE

- Neutrinos and why we love them
- Interactions of neutrinos with matter
- Interactions of neutrinos with nuclei and why we care
- Example 1: ~GeV neutrino interactions in long-baseline oscillation experiments
- Example 2: coherent elastic neutrino-nucleus scattering
- Summary

- 3 flavors (families)
- Interact only via weak interaction (& gravity)
- Tiny mass (< 1 eV)

Why do neutrinos matter?

fundamental particles and interactions

astrophysical systems

nuclear physics

cosmology

Wild and tame neutrinos

Neutrino Mass and Oscillations

Flavor states related to mass states by a unitary mixing matrix

If mixing matrix is not diagonal, get *flavor oscillations:*

energy- and baselinedependent flavor change

(essentially,interference between mass states)

Distance traveled

Neutrino Mass and Oscillations

Flavor states related to mass states by a unitary mixing matrix

If mixing

Susanne Mertens on absolute mass
Nianguo Lu on oscillations

energy- and baselinedependent flavor change

(essentially,interference between mass states)

Distance traveled

Neutrino Interactions with Matter

Neutrinos are aloof but not *completely* unsociable

with flavor corresponding to neutrino flavor

(must have enough energy to make lepton)

	Electrons		
	Elastic scattering		
Charged	$\nu + e^- \to \nu + e^-$		
current	[[] √] _e ►		
Neutral current	v e		
	Useful for pointing		

	Electrons	Protons	
	Elastic scattering	Inverse beta decav	
Charged	$\nu + e^- \to \nu + e^-$	$\bar{\nu}_e + p \rightarrow e^+ + n$	
current		γ e ⁺ γ	
	° Ve⁻	ve	
	-	n 🛰	
	e	Elastic scattering	
Neutral	V	р	
current	liseful	very low energy	
	for pointing	recoils	

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	[[] √ _e ► ✓ e ⁻	γ e^+ γ \overline{v}_e	r_{v_e} $r_{e^{+/-}}$ Various
Neutral current	v e -	Elastic scattering p	$ \nu + A \rightarrow \nu + A^* $ $ \rho = 0 + 10 + 10 + 10 + 10 + 10 + 10 + 10 $
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

Simple targets... ~well understood

	Electrons	Protons	Nuclei
	Elastic scattering $\nu + e^- \rightarrow \nu + e^-$	Inverse beta decay $\bar{\nu}_e + p \rightarrow e^+ + n$	$ \nu_e + (N, Z) \to e^- + (N - 1, Z + 1) $ $ \bar{\nu}_e + (N, Z) \to e^+ + (N + 1, Z - 1) $
Charged current	[[] √ _e ► V _e • • • • • • • • • • • • • • • • • • •	$ \begin{array}{c} \gamma \\ e^+ & \gamma \\ \overline{v_e} \\ \end{array} $	r_{v_e} r_{v
Neutral current	v¢	Elastic scattering vp	$ \nu + A \rightarrow \nu + A^* $ $ \rho = \rho + A^* $ $ \rho = \rho$
	Useful for pointing	very low energy recoils	$ \nu + A \rightarrow \nu + A $ Coherent elastic (CEvNS)

Generally more complicated!

Why do we care about neutrino-nucleus interactions?

fundamental particles and interactions

We need to understand the nature of the neutrino

- interpretation of neutrino oscillation...
 how do the flavors change?
- are there new interactions?
 beyond the Standard Model physics?

cosmology

Why do we care about neutrino-nucleus interactions?

We need to unfold the fluxes from astrophysical systems (Sun, supernovae, blazars, mergers...) from detection on Earth

astrophysical systems

Why do we care about neutrino-nucleus interactions?

We can learn about the structure of nuclei, reactor processes,...

nuclear physics

Long-baseline beam experiments for oscillation physics

Current

Past

K2K

KEK to Kamioka 250 km, 5 kW

FNAL to Soudan 734 km, 400+ kW

CERN to LNGS 730 km, 400 kW

NOvA FNAL to Ash River 810 km, 400-700 kW

T2K (II) J-PARC to Kamioka 295 km, 380-750 kW →>1 MW

Future

LBNF/DUNE

FNAL to Homestake 1300 km, 1.2 MW (→2.3 MW)

Hyper-K J-PARC to Kamioka 295 km, 750 kW (→1.3 MW)

And beyond... ESSnuB, neutrino factories...

These make use of ~GeV neutrinos from π decay in flight

Neutrino-nucleus interactions in this regime have complicated final states

MINER_V**A**

Detector at NuMI (Fermilab) to measure cross-sections of ~GeV neutrinos on nuclear targets (finely-segmented scintillator + em & hadronic calorimeters)

These challenging studies are critical for interpretation of neutrino oscillation experiments

Muon (or radioactive isotope) storage rings

are conceptually attractive

for well-understood neutrino flux

from muon decay in flight, tunable energy

in principle good for
 precision cross-section measurements

e.g., NuSTORM

Now look at the low-energy regime and the gentlest interaction with nuclei

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$\nu + A \rightarrow \nu + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Coherent elastic neutrino-nucleus scattering (CEvNS)

$$v + A \rightarrow v + A$$

A neutrino smacks a nucleus via exchange of a Z, and the nucleus recoils as a whole; **coherent** up to $E_v \sim 50$ MeV

Nucleon wavefunctions in the target nucleus are **in phase with each other** at low momentum transfer

For $QR \ll 1$, [total xscn] ~ A² * [single constituent xscn]

A: no. of constituents

First proposed >4 decades ago!

PHYSICAL REVIEW D

VOLUME 9, NUMBER 5

1 MARCH 1974

Coherent effects of a weak neutral current

Daniel Z. Freedman[†]

National Accelerator Laboratory, Batavia, Illinois 60510 and Institute for Theoretical Physics, State University of New York, Stony Brook, New York 11790 (Received 15 October 1973; revised manuscript received 19 November 1973)

Our suggestion may be an act of hubris, because the inevitable constraints of interaction rate, resolution, and background pose grave experimental difficulties for elastic neutrino-nucleus scattering. We will discuss these problems at the end of this note, but first we wish to present the theoretical ideas relevant to the experiments.

Also: D. Z. Freedman et al., "The Weak Neutral Current and Its Effect in Stellar Collapse", Ann. Rev. Nucl. Sci. 1977. 27:167-207

Large cross section (by neutrino standards) but hard to observe due to tiny nuclear recoil energies:

CEvNS: what's it good for?

CEvNS as a **signal** for signatures of *new physics*

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics

CEvNS as a **signal** for *astrophysics*

CEvNS as a practical tool

(not a complete list!)

CEvNS: what's it good for?

CEvNS as a **signal** for signatures of *new physics*

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics

CEvNS as a **signal** for *astrophysics*

CEvNS as a practical tool

(not a complete list!)

Need to measure N² dependence of the CEvNS xscn

Non-Standard Interactions of Neutrinos:

new interaction **specific to** v's Look for a CEvNS **excess** or **deficit** wrt SM expectation

Example models: Barranco et al. JHEP 0512 & references therein: extra neutral gauge bosons, leptoquarks, R-parity-breaking interactions More studies: see https://sites.duke.edu/nueclipse/files/2017/04/Dent-James-NuEclipse-August-2017.pdf

CEvNS: what's it good for?

CEvNS as a **signal** for signatures of *new physics*

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics (DM)

CEvNS as a signal for astrophysics

CEvNS as a practical tool

(not a complete list!)

So

→ Many

Things

The so-called "neutrino floor" (signal!) for direct DM experiments

How to measure CEvNS

The only experimental signature:

tiny energy deposited by nuclear recoils in the target material

detectors developed over the last ~few decades are sensitive to ~ keV to 10's of keV recoils

Low-energy nuclear recoil detection strategies

Maximum recoil energy as a function of E_{v}

Maximum recoil energy as a function of E_{ν}

Maximum recoil energy as a function of E_{ν}

Maximum recoil energy as a function of E_{ν}

Both cross-section and maximum recoil energy increase with neutrino energy:

Want energy as large as possible while satisfying coherence condition: $Q \lesssim \frac{1}{R}$ (<~ 50 MeV for medium A)

Stopped-Pion (π**DAR)** Neutrinos

49

Stopped-Pion Neutrino Sources Worldwide

Spallation Neutron Source

Oak Ridge National Laboratory, TN

Proton beam energy: 0.9-1.3 GeV Total power: 0.9-1.4 MW Pulse duration: 380 ns FWHM Repetition rate: 60 Hz Liquid mercury target

The neutrinos are free!

Nuclear Target	Technology		Mass (kg)	Distance from source (m)	Recoil threshold (keVr)
Csl[Na]	Scintillating crystal	flash	14.6	19.3	6.5
Ge	HPGe PPC	zap	16	20	<few< th=""></few<>
LAr	Single-phase	flash	22	29	20
Nal[TI]	Scintillating crystal	flash	185*/3338	28	13

Multiple detectors for N² dependence of the cross section

First light at the SNS (stopped-pion neutrinos) with 14.6-kg CsI[Na] detector

D. Akimov et al., *Science*, 2017 http://science.sciencemag.org/content/early/2017/08/02/science.aao0990

Neutrino non-standard interaction constraints for current CsI data set:

*CHARM constraints apply only to heavy mediators

What's Next for COHERENT?

62

One measurement so far! Want to map out N² dependence

COHERENT CEvNS Detector Status and Farther Future

Nuclear Target	Technology	Mass (kg)	Distance from source (m)	Recoil threshold (keVr)	Data-taking start date	Future
Csl[Na]	Scintillating crystal	14.6	20	6.5	9/2015	Decommissioned
Ge	HPGe PPC	16	20	<few< th=""><th>2020</th><th>Funded by NSF MRI, in progress</th></few<>	2020	Funded by NSF MRI, in progress
LAr	Single- phase	22	20	20	12/2016, upgraded summer 2017	Expansion to 750 kg scale
Nal[TI]	Scintillating crystal	185*/ 3388	28	13	*high-threshold deployment summer 2016	Expansion to 3.3 tonne , up to 9 tonnes

+D₂O for flux normalization + concepts

for other targets...

COHERENT LAr Engineering Run Result (COHERENT LA

- Results from more Csl running, improved QF & analysis
- Results from 22-kg LAr detector
- Treatment of shape systematics
- Accelerator-produced DM sensitivity

Neutrinos from nuclear reactors

- v_e-bar produced in fission reactions (one flavor)
- huge fluxes possible: ~2x10²⁰ s⁻¹ per GW
- several CEvNS searches past, current and future at reactors, but recoil energies<keV and backgrounds make this very challenging
- F~1, so even smaller nuclear effects than stopped- π

Reactor CEvNS Efforts Worldwide

Experiment	Technology	Location	
CONNIE	Si CCDs	Brazil	
CONUS	HPGe	Germany	
MINER	Ge/Si cryogenic	USA	
NuCleus	Cryogenic CaWO ₄ , Al ₂ O ₃ calorimeter array	Europe	
∨GEN	Ge PPC	Russia	
RED-100	LXe dual phase	Russia	
Ricochet	Ge, Zn bolometers	France	640 mm
TEXONO	p-PCGe	Taiwan	

Many novel low-background, low-threshold technologies

See H. Wong, Nu2018 talk for a more detailed survey

CEvNS: what's it good for?

CEvNS as a **signal** for signatures of *new physics*

CEvNS as a **signal** for understanding of "old" physics

CEvNS as a **background** for signatures of new physics (DM)

CEvNS as a signal for astrophysics

CEvNS as a practical tool

(not a complete list!)

Natural neutrino fluxes

Natural neutrino fluxes

65

J. Billard, E. Figueroa-Feliciano, and L. Strigari, arXiv:1307.5458v2 (2013). L. Strigari 10⁻³⁶ Cross section [cm²] (normalised to nucleon) XENON1T LUX 10-38 PandaX DAMIC **SuperCDMS** Darkside 50 EDELWEISS-III 10^{-40} **CRESST-II** 10⁻⁴² 10⁻⁴⁴ atmospheric 10-46 Coherent v diffuse Background ν's bg SN v's 10^{-48} Atmospheric and DS. solar v's 10⁻⁵⁰ 10^{+1} 10^{+2} 10⁰ 10^{+4} £3 Mass $[\text{GeV}/c^2]$ SN burst flux @ 10 kpc is 9-10 orders of magnitude greater than DSNB flux over ~10 sec

The so-called "neutrino floor" for DM experiments

Think of a SN burst as "the v floor reaching up to meet you"

Supernova neutrinos in tonne-scale DM detectors

Detector example: XENON/LZ/DARWIN

dual-phase xenon time projection chambers

Lang et al.(2016). Physical Review D, 94(10), 103009. http://doi.org/10.1103/PhysRevD.94.103009

Take-Away Messages

- **Neutrinos** matter:
 - tiny (but emphatically non-zero) mass, weakly interacting...
 - but strong in physics! particle physics, cosmology, astrophysics, nuclear physics
- Understanding of **neutrino interactions with nuclei** matters:
 - interpretation of neutrino experiments (oscillation, astrophysical)
 - search for beyond-the-SM physics
 - understanding of the nuclei themselves

CEvNS at low energy... first light @ SNS, but low-energy detection frontier Is exciting for the future! High-energy neutrino Interactions are another critical direction for oscillation physics (Xianguo later today)

Extras/Backups

Neutrino Alley Deployments: current & near future

CONUS

- Brokdorf 3.9 GW reactor
- 17 m from core
- 4 kg Ge PPC
- ~300 eV threshold

Eur. Phys. J. C (2019) 79: 699

NUCLEUS "gram-scale cryogenic calorimeters"

The COHERENT collaboration

http://sites.duke.edu/coherent

The SNS has large, extremely clean stopped-pion v flux

0.08 neutrinos per flavor per proton on target

Time structure of the SNS source 60 Hz *pulsed* source

Single-Phase Liquid Argon

- ~22 kg fiducial mass
- 2 x Hamamatsu 5912-02-MOD 8" PMTs
 - 8" borosilicate glass windown
 - 14 dynodes
 - QE: 18%@ 400 nm
- Wavelength shifter: TB-coated teflon walls and PMTs
- Cryomech cryocooler 90 Wt
 - PT90 single-state pulse-tube cold head

Detector from FNAL, previously built (J. Yoo et al.) for CENNS@BNB (S. Brice, Phys.Rev. D89 (2014) no.7, 072004)

Tonne-scale LAr Detector

- 750-kg LAr will fit in the same place, will reuse part of existing infrastructure
- Could potentially use depleted argon

CC/NC **inelastic** in argon of interest for supernova neutrinos

$$\begin{array}{ll} \text{CC} & \nu_e \texttt{+}^{40}\text{Ar} \rightarrow e^- \texttt{+}^{40}\text{K}^* \\ \text{NC} & \nu_x \texttt{+}^{40}\text{Ar} \rightarrow \nu_x \texttt{+}^{40}\text{Ar}^* \end{array}$$

High-Purity Germanium Detectors

P-type Point Contact

- Excellent low-energy resolution
- Well-measured quenching factor
- Reasonable timing
 - 8 Canberra/Mirion 2 kg detectors in multi-port dewar
 - Compact poly+Cu+Pb shield
 - Muon veto
 - Designed to enable additional detectors

Sodium Iodide (NaI[TI]) Detectors (NalvE)

- up to 9 tons available, 2 tons in hand
- QF measured
- require PMT base refurbishment (dual gain) to enable low threshold for CEvNS on Na measurement
- development and instrumentation tests underway at UW, Duke

In the meantime: **185 kg deployed at SNS** to go after v_e CC on ¹²⁷I

Isotope	Reaction Channel	Source	Experiment	Measurement (10^{-42} cm^2)	Theory (10^{-42} cm^2)
¹²⁷ I	$^{127}{ m I}(u_e,e^-)^{127}{ m Xe}$	Stopped π/μ	LSND	$284 \pm 91 (\mathrm{stat}) \pm 25 (\mathrm{sys})$	210-310 [Quasi-particle] (Engel et al., 1994)

J.A. Formaggio and G. Zeller, RMP 84 (2012) 1307-1341

The cross section is cleanly predicted in the Standard Model

$$\frac{d\sigma}{dT} = \frac{G_F^2 M}{\pi} F^2(Q) \left[(G_V + G_A)^2 + (G_V - G_A)^2 \left(1 - \frac{T}{E_\nu}\right)^2 - (G_V^2 - G_A^2) \frac{MT}{E_\nu^2} \right]$$

E_v: neutrino energy
T: nuclear recoil energy
M: nuclear mass
Q = $\sqrt{(2 \text{ M T})}$: momentum transfer

F(Q): nuclear form factor, <~5% uncertainty on event rate

