

Dark Matter with the Fermi-LAT

R. Caputo NASA/GSFC On behalf of the Fermi-LAT Collaboration

Gravity Information and Fundamental Symmetries

MPQ, Garching 5 November 2019

What do we know?

constraints from CMB, N-body simulations

Now what?

constraints from CMB, primordial nucleosynthesis

What do we know?

- 1. Does the candidate satisfy the previous requirements?
- 2. How do we look for the candidate?
- 3. How do we discover the candidate?

What do we know?

- 1. Does the candidate satisfy the previous requirements?
- 2. How do we look for the candidate?
- 3. How do we discover the candidate?

Searching for Dark Matter:

γ-rays

Observed = Particle Properties x Astrophysics Properties

Fermi Large Area Telescope

The Fermi-LAT Modular design (4 modules), 3 subsystems

Tracker Silicon detectors Convert γ to e^{+/-} Reconstruct γ direction

> Sky Survey 2.5 sr FOV (~20% of the sky!) Full Sky ~3 hours

Anti-Coincidence Detector Scintillating tiles Charged particle separation

Calorimeter CsI scintillating crystal logs Measure energy of γ and $e^{+/-}$ Image and separate EM/had. showers

Trigger rate: ~10 kHz read out: ~400 Hz

 γ -ray data made public within 24 hours

Extragalactic Sources

Local Sources

Active Galactic Nuclei +Starburst Galaxies... Sun/Solar Flares + Terrestrial Gamma-ray Flashes

+Supernova Remnants +Pulsar Wind Nebulae +Globular Clusters

Pulsars

>5000 sources

51 GeV, 10 year map

Galactic Sources

Exotic and Transient Astrophysics

R. Caputo, NASA/GSFC I Fermi DM@MPQ

Model of Dark Matter Distribution

L. Pieri et al., PRD83:023518,2011 R. Caputo, NASA/GSFC I Fermi DM@MPQ

Search Strategies

Galaxies shine in γ rays

Active Galactic Nucleus

accretion onto supermassive black hole

Population of particle accelerators

pulsars, supernova remnants, ...

Interstellar Medium

cosmic rays interacting with gas and photons

Dark matter

particle annihilation/decay into gamma rays

Galaxies shine in γ rays

Active Galactic Nucleus

accretion onto supermassive black hole

Population of

 particle accelerators

pulsars, supernova remnants, ...

Interstellar Medium 🗸

cosmic rays interacting with gas and photons

Dark matter ???

particle annihilation/decay into gamma rays

Ackermann et al., ApJ 2017

Ackermann et al., ApJ 2017

R. Caputo, NASA/GSFC | Fermi DM@MPQ

Johnson et al., PRD 2019

Dwarf Spheroidal Galaxies

R. Caputo, NASA/GSFC | Fermi DM@MPQ

Dwarf Spheroidal Galaxies

R. Caputo, NASA/GSFC | Fermi DM@MPQ

A. Albert et al, ApJ 2017 14

Star Forming Galaxies

R. Caputo, NASA/GSFC I Fermi DM@MPQ

RC et al., PRD 2016

R. Caputo, NASA/GSFC | Fermi DM@MPQ

RC et al., PRD 2016

Another Milky Way-like excess??

Galactic disk not detected

Emission comes primarily. from inner ~5 kpc

> Not correlated with interstellar gas and star formation regions

γ rays@M31: Interpretations

Old stellar populations: Low-mass X-ray binaries and MSPs... found in the inner regions of M31 (reminiscent of the GCE)

https://www.jpl.nasa.gov/news/news.php?feature=4811

J-factors: Milky Way: 2x10²² GeV²/cm⁵ M31: 8x10¹⁸ GeV²/cm⁵ Tamm et al. (2012)

γ rays@M31: Dark Matter

M. Di Mauro et al., PRD 2019 17

Unidentified γ sources

Unidentified γ sources

Fermi Catalog Sources (3FGL, 2FHL, 3FHL)

J. Coronado-Blázquez et al JCAP07(2019)020¹⁹

R. Caputo, NASA/GSFC I Fermi DM@MPQ

J. Coronado-Blázquez et al JCAP07(2019)020 20

Unidentified γ sources

Beyond WIMP Dark Matter

- 1. Does the candidate allow the present universe?
- 2. How do we look for the candidate?
- 3. How do we discover the candidate?

Axion-like Particles

Convert in Galactic magnetic field (Primakoff effect) Or decay

[Peccei & Quinn 77; Wilczek 78; Weinberg 78; Preskill et al. 83; Abbott & Sikivie 83; Witten 84; e.g. Arvanitaki et al. 09; Cicoli et al. 12; Arias et al. 2012; Raffelt & Stodolsky 1988]

B

credit: iStock

Axion-like Particles

Convert in Galactic magnetic field (Primakoff effect) Or decay

[Peccei & Quinn 77; Wilczek 78; Weinberg 78; Preskill et al. 83; Abbott & Sikivie 83; Witten 84; e.g. Arvanitaki et al. 09; Cicoli et al. 12; Arias et al. 2012; Raffelt & Stodolsky 1988]

B

credit: iStock

Axion Induced Spectral Modulations

 10^{-6}

 10^{-1}

Ajello et al. 2016 24

 10^{2}

 10^{1}

 10^{0}

Energy (GeV)

 $\Delta \ln \mathcal{L}$

Axion Induced Spectral Modulations

- Central radio galaxy of Perseus cluster
- Bright γ-ray emitter
- Central B field of cluster: 25 μG

R. Caputo, NASA/GSFC I Fermi DM@MPQ

Axions Produced in Core-Collapse Supernovae

credit: iStock

Payez et al., 2015

Axions Produced in Core-Collapse Supernovae

credit: iStock

Produced ~10s with neutrinos Peak ~60 MeV Flux ~ gay⁴

Meyer et al., 2017

Current/Future work

M. Di Mauro et al, Fermi Symposium 2018

Connecting the Pieces

Need a theory to connect the measurements...

Combining the Theories

Cahill-Rowley et al., arXiv:1305.6921 28

The Next Generation...

The Next Generation...

Gamma-ray mission concepts...

All-sky Medium Energy Gamma-ray Observatory: AMEGO, eAstrogam

View of the Galactic Plane

arXiv:1508.07349

McEnery et al arXiv: 1907.07558

The Next Generation...

Gamma-ray mission concepts...

All-sky Medium Energy Gamma-ray Observatory: AMEGO, eAstrogam

McEnery et al arXiv: 1907.07558

View of the Galactic Plane

Next-Gen MeV arXiv:1508.07349

Complementarity in the γ-ray Sky

Axion/ALP Dark Matter Sensitivities

R. Caputo, NASA/GSFC I Fermi DM@MPQ

32

Dark Matter and Fermi-LAT

