

Universität Karlsruhe (TH)

Forschungsuniversität • gegründet 1825

CMS Computing Model with Focus on German Tier1 Activities

Armin Scheurer

GridKa School 2009, High Energy Physics Session Wednesday, 02.09.2009

Overview

- The Large Hadron Collider (LHC)
- The Compact Muon Solenoid (CMS)
- CMS Computing Model
- CMS in Germany
- CMS Workflow & Data Transfers
- CMS Service Challenges

Large Hadron Collider

Proton-Proton Collider

Circumference: 27 km

Beam Energy: 7 TeV/c²

Below Surface: 100 m

Temperature: -271 °C

Energy Use: 1 TWh/a

4 Large Experiments

- CMS (General-Purpose)
- Atlas (General-Purpose)
- LHCb (Physics of b-Quarks)
- Alice (Lead Ion Collisions)

2 Smaller Experiments

LHCf and Totem

Compact Muon Solenoid

Technical Details:

Total Weigh: 12 500 t

Diameter:

Total Length: 21,5 m

Magnetic Field

Solenoid: 4 Tesla

Yoke: 2 Tesla

Readout Channels, e.g.

Tracker: 10 Mio.

Sum: 100 Mio.

Collission Rate: 40 MHz

Data-Rate: Imagine a 100 MPixle-Camera taking 40 Mio. pictures per second!

Pictures of CMS

Physics Motivation

- In each proton-proton collision, more than 1000 particles are created.
- The decay products allow to conclude on underlying physics processes of the collision.
- Test of the Standard Model (at the TeV energy scale)
- Search for the Higgs-Boson
- Physics beyond the SM (e.g. SUSY, extra dimensions, ...)

Trigger and Event Rate

60 TB/sec

Level 1 Trigger

Reduction with ASICs (Hardware)

Collision Rate: 40 MHz

Event-Size: 1,5 MB

150 GB/sec

Tape & HDD Storage

for Offline-Analysis

225 MB/sec

High Level Trigger

Software Data Reduction

Recorded Events: 150 per second

→ 1.5 PB of data per year

CMS Collaboration

CMS Computing Model

- LHC experiments have decided to use distributed computing and storage resources.
 - The Worldwide LHC Computing Grid (WLCG).
- Grid services based on the gLite middleware.
- Computing centres arranged in a four-tiered hierarchical structure.
 - Availability and resources are regulated by MOU (e.g. Downtime per year, response time, etc.).

CMS Tier Structure

WLCG Resources

Taken from the WLCG Real Time Monitor:

http://gridportal.hep.ph.ic.ac.uk/rtm/

Main Tier Responsibilities

Tier0:

- Storage of RAW detector data.
- First reconstruction of physics objects after data-taking.

Tier1:

- Host one dedicated copy of RAW and reconstructed data outside the TierO.
- Re-processing of stored data.
- Skimming (creation of small sub data samples)

Tier2:

- Monte Carlo production/simulation.
- Calibration activities.
- Resources for physics groups analyses.

Tier3:

- Individual user analyses.
- Interactive logins (for development & debugging)

German CMS Members

Tier1 GridKa

Located at Forschungszentrum Karlsruhe (KIT, Campus Nord)

- Part of and operated by the Steinbuch Centre for Computing (SCC, KIT)
- Multi-VO Tier centre (Supports 8 HEP experiments)
 - 4 LHC experiments: CMS, ATLAS, ALICE, LHCb
 - 4 non-LHC experiments:CDF, D0, BaBar, Compass

GridKa Resources

Network:

- 10 Gbit link CERN GridKa
- 3 x 10 Gbit link to 3 European Tier1s
- 10 Gbit link to DFN/X-Win (e.g. Tier2 connections)

Storage:

- Based on dCache (developed at DESY and FNAL)
- CMS Disk: ~ 650 TB + D-Grid: ~ 40 TB
- CMS Tape: ~ 900 TB

CPU:

- CMS Resources: ~ 800 cores, 2 GB Ram per core
- D-Grid Resources: ~ 500 cores, 2 GBRam per core

D-Grid resources: partially usable for FSP-CMS

CMS GridKa Resource Pledges

	2010	2011	2012	
CPU [MSI2k] 3.5		4.3	5.1	
Disk [PB]	1.6	2.0	2.4	
Tape [PB]	2.8	3.7	4.6	

Tier2/3 and NAF Resources

Besides the Tier1 resources, considerable CPU and disk capacities are available in Germany 2008/2009:

Tier2 (German CMS Tier2 federation):

DESY: 400 cores, 185 TB disk

RWTH Aachen: 360 cores, 99 TB disk

Tier3:

RWTH Aachen: 850 cores, 165 TB disk

Uni Karlsruhe: 400 cores, 150 TB disk

Uni Hamburg:
15 TB disk

NAF (National Analysis Facility):

DESY: 245 cores, 32 TB disk

D-Grid resources, partially usable for FSP-CMS:

RWTH Aachen: 600 cores, 231 TB disk

GridKA: 500 cores, 40 TB disk

CMS Workflow

PhEDEx Data Transfers

- Physics Experiment Data Export (CMS data placement tool):
 - Various agents/daemons are run at the tier sites (depending on the tier level)
 - upload, download, MSS stage-in/out, DB, ...
 - Provides automatic WAN data transfers, based on subscriptions
 - Automatic load-balancing
 - File transfer routing topology (FTS)
 - Automatic bookkeeping (database entries, logging)
 - Consistency checks (DB vs. filesystem)
 - File integrity checks

Other Involved Components

- Monte Carlo Production Agent (ProdAgent)
- CMS Remote Analysis Builder (CRAB)
- Dataset Bookkeeping System (DBS)
- Data Location Service (DLS)
- Trivial File Catalog (TFC)
- Grid middleware (gLite)
 - SE, CE, RB, UI, ...

DBS:
Relates dataset/block
and site

DLS:

Relates dataset/block and logical file name (LFN)

TFC:

Relates LFN and local file name

Very complex system → Needs intense testing, debugging and optimisation.

WLCG Job Workflow

CMS Service Challenges - 1

- Computing, Service and Analysis (CSA) Challenges: Test the readiness for data-taking
- CSA06, CSA07 and CSA08 were performed to test the computing and network infrastructure and the computing resources at a level of 25%, 50% and 100% required for the LHC start-up.
- The whole CMS workflow was tested:
 - Production/Simulation
 - Prompt reconstruction at the Tier0
 - Re-reconstruction at the Tier1s
 - Data distribution to Tier1s and Tier2s
 - Data Analyses

CMS Service Challenges - 2

- Cumulative data volume transferred during CSA08:
 - > 2 PetaByte in 4 weeks
- Transfer rate from the Tier0 to the Tier1s:
 - < 600 MB/sec</p>
- Goal was achieved only partially, problems with:
 - Storage systems (CASTOR at CERN)
 - Problems identified and fixed afterwards.

CMS Service Challenges - 3

- CMS Grid-job statistics: May to August 2008
 - German centres GridKa, DESY and Aachen performed extremely well, compared to all other CMS tier sites.

Results of CMS Challenges

Service	Goal	Status	Goal	Status	Goal	Status
	2008	2008	2007	2007	2006	2006
Tier-0	150-300	Achieved	100	Only at	50	Achieved
Reco Rate	Hz	Acmeved	Hz	bursts	Hz	Acmeveu
Tier-0 → Tier-1	600	Achieved	300	Only at	150	Achieved
Transfer Rate	MB/sec	partially	MB/sec	bursts	MB/sec	Acmeved
Tier-1 → Tier-2	50-500	Achieved	20-200	Achieved	10-100	Achieved
Transfer Rate	MB/sec	Achieved	MB/sec	partially	MB/sec	Achieved
Tier-1 → Tier-1	100	Achieved	50	Achieved	N/A	
Transfer Rate	MB/sec	Acmeveu	MB/sec	partially		_
Tier-1 Job	50 000	Achieved	25 000	Achieved	12 000	3 000
Submission	jobs/day		jobs/day		jobs/day	jobs/day
Tier-2 Job	150 000	Achieved	75 000	20 000	48 000	Achieved
Submission	jobs/day	Acmeved	jobs/day	jobs/day	jobs/day	Achieved
Monte Carlo Simulation	1.5 x 10 ⁹ events/year	Achieved	50 x 10 ⁶ events/month	Achieved	N/A	-

STEP09 Activities @ FZK

- STEP09 was the first scheduled large-scale multivo test within the WLCG.
- The following activities have been performed at GridKa during STEP09:
 - 1st STEP09 week (all files were on disk):
 - ■Transfers T0 → T1
 - ■Transfers T1 → T1
 - All AODSIM data were successfully written to tape after transfer.
 - ■Transfers T1 → T2
 - Reprocessing tasks
 - 2nd STEP09 week (files were flushed from disk):
 - Same tasks like during the first week

STEP09: Tape Performance

1st week: 10 -15 TB/day

mostly writing + reading

2nd week: 25-30 TB/day

reading + writing

1st week: 150 MB/sec

mostly writing + reading

2nd week: 250 MB/sec

reading + writing

STEP09: Transfer Imports

T0, T1 and T2 imports to GridKa during STEP09

■ First week: 30 – 170 MB/sec, Second week: 25 – 200 MB/sec

All AODSIM data successfully written to tape.

Summary

- CMS uses Grid technology for data access and processing.
- Altogether the WLCG/CMS computing model is very complex and needs intense testing.
- Multiple service challenges have proven the readiness for first data.
- PhEDEx is used for reliable large-scale data management.
- Experience has shown, that monitoring is indespensable for the operation of such a heterogeneous system.
- More information about the requirement of monitoring is presented later in this session.

