UHECR with CRPropa3: Understanding the effects of astrophysical hypothesis and source distance

Rodrigo Guedes Lang

São Carlos Institute of Physics, University of São Paulo, Brazil visiting DESY/Zeuthen

CRPropa face-to-face meeting

Zeuthen - Monday, September 30th, 2019

rodrigo.lang@usp.br

FUNDAÇÃO DE AMPARO À PESQUISA DO ESTADO DE SÃO PAULO

UHECR spectrum

- Reproducing the UHECR spectrum is the main goal of several works;
- Different astrophysical and computational hypotheses are needed;
- In this work we evaluate the effects of a few of them.

<u>Sources</u>

-Intrinsic spectrum -Primary masses -Density -Minimum distance -Evolution with redshift

<u>Propagation</u>

-Magnetic fields -Photon background -Interaction cross-sections

<u>Sources</u>

-Intrinsic spectrum -Primary masses -Density -Minimum distance -Evolution with redshift

Source spectrum

CRPropa face-to-face

Source spectrum

- Usually fitted to data:
 - Fixed values simulated;
 - Events weighted for each combination of parameters.

ax

Source spectrum

- In this work:
 - Fixed values;
 - Pure composition;
 - Easier to visualize the effects.

→ arbitrary $f_{max} = 10^{19.5} V$ **f**_A → ρ, He, N, Si, Fe

Hypotheses

<u>Sources</u>

-Maximum energy

-Maximum distance

-Source evolution

-Source distribution

<u>Propagation</u>

-Energy losses

-Adiabatic losses

-Pair production

-Pion production

-EBL models

Astrophysical Computational

<u>Sources</u>

-Energy -Distance -Evolution -Distribution

Propagation -Losses -Adiabatic -Pair prod. -Pion prod. -EBL models

Maximum simulated energy

- Higher energies increase heavily the computational cost;
- Most energetic events don't contribute to the
- spectrum due to the power-law (with exponential cutoff) behaviour;
- $E_{max} = \{10^{21}, 10^{22}, 10^{23}\} \text{ eV}$

CRPropa face-to-face

Rodrigo Guedes Lang

11

Rodrigo Guedes Lang

15

 \mathbf{P}

S

Fe

Propagation

-Losses

-Adiabatic

-Pair prod.

-Pion prod.

-EBL models

Maximum simulated energy

- For reasonable spectral indexes (- Γ < 0) and maximum rigidities (R_{max} < 10²⁰ V), E_{max} = 10²¹ eV is still fine and E_{max} = 10²² eV is surely a safe choice.

CRPropa face-to-face

<u>Sources</u> -Energy -Distance -Evolution -Distribution

<u>Propagation</u>

-Losses

-Adiabatic

-Pair prod.

-Pion prod.

-EBL models

Maximum simulated distance

- Further distances increase heavily the computational cost;
- Most of the far events don't contribute to the

spectrum due to energy losses;

Rodrigo Guedes Lang

Fe

Rodrigo Guedes Lang

 $z_{max} = 1.5$ $z_{max} = 2$ $z_{max} = 1$ $z_{max} = 0.5$

---- z_{max} = 0.1 Auger 2017

1000100010001000

20

Sources -Energy -Distance -Evolution -Distribution

<u>Propagation</u>

-Losses

-Adiabatic

-Pair prod.

-Pion prod.

-EBL models

Maximum simulated distance

- When looking only at the UHECR even small redshifts like $z_{max} = 0.5$ seem to be enough. $z_{max} = 1$ is surely a safe choice;
- If secondaries are of interest, larger redshifts should be considered.

CRPropa face-to-face

Sources -Energy -Distance -Evolution -Distribution

<u>Propagation</u>

-Losses

-Adiabatic

-Pair prod.

-Pion prod.

-EBL models

Source evolution with redshift

- The distribution of sources may

increase/decrease with redshift;

- Usually an evolution of the form $(1+z)^m$ is taken;
- m = {-3, -1, 0, 1, 3}

не Si Fe

CRPropa face-to-face

<u>Sources</u>

-Energy -Distance -Evolution -Distribution

<u>Propagation</u>

-Losses

-Adiabatic

-Pair prod.

-Pion prod.

-EBL models

Source evolution with redshift

- The source evolution plays a very important role in the low energy end of the spectrum;
- This effect is strong for larger masses going up

to $\sim 10^{19.7} \, eV$ for iron;

- This may introduce a decent systematic uncertainty on some analysis.

<u>Sources</u>

-Energy -Distance -Evolution -Distribution

<u>Propagation</u>

-Losses

-Adiabatic

-Pair prod.

-Pion prod.

-EBL models

Source distribution

- It is usual to have sources uniformly distributed;
- Sources can be uniformly distributed in comoving distance (χ) or light-travel distance (cdt);
 In CRPropa 3 those are implemented in the option withCosmology in SourceUniform1D;

 $\frac{dN}{cdt} = (1+z)\frac{dN}{d\chi}$

CRPropa face-to-face

-Energy -Distance -Evolution -Distribution

Propagation -Losses

-Adiobatic

-Pair prod.

-Pion prod.

-EBL models

Source distribution

- Effects similar to those of the source evolution with redshift;
- Why does the option *withCosmology=true* uses

a uniform distribution in light-travel distance and *withCosmology=false* uses a uniform distribution in comoving distance?

-Energy

- -Distance
- -Evolution

-Distribution

-Adiabatic -Pair prod. -Pion prod. -EBL models

Energy losses

- Propagating UHECR lose energy via:
 - Adiabatic losses;
 - Pair production;
 - Pion production;
 - Photodisintegration;
- Each interaction is dominant for each particle mass and energy.

-Energy -Distance

-Evolution

Propagation -Losses -Adiabatic -Pair prod. -Pion prod. -EBL models

Adiabatic losses

- Propagating UHECR lose energy adiabatically due to the expansion of the universe;
- In CRPropa3, there are two options for this
- energy loss: *Redshift()* and *FutureRedshift()*;
- The effect of using or not the option

SourceRedshift1D() is also tested;

не Si

Fe

Rodrigo Guedes Lang

.....

20

Rodrigo Guedes Lang

48

-10

Si

Fe

-Energy -Distance -Evolution -Distribution

Propagation -Losses -Adiabatic -Pair prod. -Pion prod. -EBL models

Adiabatic losses

- *SourceRedshift1D()* <u>must be used</u> not only to obtain the right adiabatic losses, but most importantly to get the right EBL evolution;
- If *SourceRedshift1D(*) is used, *Redshift(*) and
- FutureRedshift() produce identical results;
- Not using *SourceRedshift1D()* and using
- *FutureRedshift()* results in a non-sense behavior there is a sharp energy loss above a given distance;

Не Si Fe

-Energy

-Distance

-Evolution

-Distribution

Pair production

- Propagating UHECR interact with the photon

background producing pairs;

- Photon background = {CMB, CMB+EBL}

Fe

Si

НΡ

CRPropa face-to-face

Rodrigo Guedes Lang

55

-10

Si

Fe

Rodrigo Guedes Lang

56

-Energy

-Distance

-Evolution

-Distribution

Propagation

-Losses

-Adiabatic

-Pair prod.

-Pion prod.

-EBL models

Pair production

- Small but non-negligible effects are found by no using the EBL;
- The effects are stronger for a pure iron

composition;

Fe

Не

CRPropa face-to-face

- -Energy
- -Distance
- -Evolution
- -Distribution

Pion production

- Photon background = {CMB, CMB+EBL};
- CRPropa 3 has the option *haveRedshiftDependence* for the pion production;

CRPropa face-to-face

Fe

Rodrigo Guedes Lang

-10

Rodrigo Guedes Lang

не

-Energy -Distance

-Evolution

-Distribution

<u>Propagation</u>

-Losses -Adiabatic -Pair prod.

-Pion prod.

-EBL models

Pion production

- Not considering the EBL has a much stronger effect than in the pair production;
- The haveRedshiftDependence option has a
- smaller effect but not completely non-negligible;
- Why isn't the default

haveRedshiftDependence = true??

CRPropa face-to-face

-Energy

-Distance

-Evolution -Distribution

<u>Propagation</u>

-Losses -Adiabatic -Pair prod.

-Pion prod.

-EBL models

EBL models

- There are a lot of uncertainties on the description of the EBL distribution;
- There are several competitive models;
- Models = {Kneiske08 (default), Stecker16_lower, Stecker16_upper}

CRPropa face-to-face

Rodrigo Guedes Lang

67

Rodrigo Guedes Lang

68

чe

Si

Rodrigo Guedes Lang

70

-10

Si

Fe

- -Energy
- -Distance
- -Evolution

-Distribution

<u>Propagation</u>

-Losses -Adiabatic -Pair prod. -Pion prod.

-EBL models

EBL models

- Different EBL models introduce huge differences in the spectrum up to the highest energies;
- It is very important to address this systematic uncertainty in the analyses.

CRPropa face-to-face

Conclusions

- Several hypotheses and approximations need to be made in order to simulate the UHECR spectrum;

- <u>Computational</u> (mostly related to speeding up the simulation): it is important to be sure that there is no effect in the analysis;

- Astrophysical: it is very important to understand how to treat them:

- Let them as fit parameters -> may lead to a huge number of free parameters;

- Set a value -> need to understand what is the resulting systematic uncertainty in each analysis.