CRPropa observer sphere lensing for forward-tracking studies

Alex Kääpä

CR/Propa face-to-face meeting

2nd October 2019

BERGISCHE UNIVERSITÄT WUPPERTAL

GEFÖRDERT VOM

Bundesministerium für Bildung und Forschung

Issues with forward-tracking

Computationally expensive (Earth is hard to hit from large distances)

 \rightarrow solution: increase size of observer sphere

→ problem: larger observer spheres cause distortion in arrival direction

compromise: efficiency ↔ realism

Backtracking and its drawback

Not well suited for discrete source distributions (e.g. point sources), esp. within Galaxy

Galactic lensing

Only deflections, no energy losses → Galaxy acts as lens:

$$\overrightarrow{p_{arr}} = L \cdot \overrightarrow{p_{inj}}$$

Limitation: lens is model dependent

Astropart. Phys. 54 (2014) 110

Observer sphere lensing

GMF is best understood in the vicinity of Earth

→ lensing to edge of volume 'close enough' to Earth

Goal: make forward-tracking studies more efficient AND realistic

Creation of observer sphere lens:

- 1 backtrack *N* particles from Earth to observer sphere surface to $get(\overrightarrow{p_{inj}}, \overrightarrow{p_{arr}})$ -pair
- 2 discretise solid angle range and count occurences of each pair
- **3 Weight** matrix with 1-norm to obtain lens L

Testing

Forwardtrack from discrete point soruce distribution (here: 10 isotropically distributed sources):

- test for 'low' energy (strongest deflections \rightarrow largest distortion): lg(E/eV) = 18.0
- Protons (all other particles by lensing for $E = Z \cdot E_{proton}$)
- R = 1000 pc (large), 100 pc (small)
- ~5 x 10^9 protons per set

Compare:

- lensed vs. unlensed w.r.t. reference distribution (R = 10 pc)
- effect of granularity

Distribution 1 (large observer, before lensing):

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Distribution 1 (large observer, after lensing):

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Distribution 1 (small observer, before lensing):

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

Distribution 1 (small observer, after lensing):

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

Distribution 1 (finer step size, before lensing):

- more realistic arrival direction distribution for all sphere sizes
- same amount of reduction of residuals as for regular granularity

Distribution 1 (finer step size, after lensing):

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Observer sphere lensing - summary

Observer sphere lenses combine strengths of forward- and backtracking simulations:

- forwardtrack to edge of observer sphere
- create lens via backtracking simulations from Earth to edge of sphere
- apply lens to arrival direction distribution (via HEALPix pixelisation)

Observer sphere lensing provides more realistic arrival direction distributions (especially for \leq 100 pc spheres)

- reduction of residuals by <10 30 %
- increase in statistics by factor of 10² 10⁴

Conclusion and future plans

- Observer sphere lensing has potential to improve forward-tracking analyses
- Publication to introduce principle to community as well as detailing method for purposes of personal application
- If desired: incorporate lenses as a tool into CRPropa framework for quick use

Thank you for your attention!

Questions?

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

Distribution 2 (finer step size, before

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Distribution 2 (finer step size, after

I _ _ I _ _ X

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Back-up - Distribution 3 (before lensing):

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Back-up - Distribution 3 (after lensing):

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Back-up - Distribution 4 (before lensing):

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Back-up - Distribution 4 (after lensing):

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Back-up - Distribution 3 (before lensing):

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

Back-up - Distribution 3 (after lensing):

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

Back-up - Distribution 4 (before lensing):

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

Back-up - Distribution 4 (after lensing):

- more realistic arrival direction distribution for all sphere sizes
- deviations small for radii \leq 100 pc (reduction of residuals by < 10 %)

Distribution 1 (finer step size, before

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Distribution 1 (finer step size, after

I _ _ I _ _ X

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Distribution 2 (finer step size, before

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Distribution 2 (finer step size, after

I _ _ _ I _ _ X

- more realistic arrival direction distribution for all sphere sizes
- reduction of residuals by 20 30 %

Results and next steps

- Results:
 - CRs are (strongly) concentrated in the Galactic plane for $<10^{19}$ eV
 - hardly any deflection > 10^{19.5} eV
 - track length isotropised $< 10^{17.5} \text{ eV}$
 - \rightarrow no information on arrival direction/source position from track length for <10^{18} eV
 - "interesting region" inbetween (mainly 10¹⁸ 10^{18.5} eV for protons)

