Kick-off discussion for QED experiments@LUXE

Marija Vranic
Thomas Grismayer
Luis O. Silva

GoLP / Instituto de Plasmas e Fusão Nuclear Instituto Superior Técnico, Lisbon, Portugal

epp.tecnico.ulisboa.pt || golp.tecnico.ulisboa.pt

The onset of quantum effects is controlled by χ

Highest value of χ is obtained for relativistic particles counter-propagating with a laser

Unity is achieved when particle feels E=Es in its own rest frame

$$E_{s} = \frac{m^{2}c^{3}}{e\hbar} \qquad \chi = \frac{\sqrt{(p_{\mu}F^{\mu\nu})^{2}}}{E_{s} mc}$$

$$\chi_e = \frac{1}{E_s} \sqrt{\left(\gamma \vec{E} + \frac{\vec{p}}{mc} \times \vec{B}\right)^2 - \left(\frac{\vec{p}}{mc} \cdot \vec{E}\right)^2}$$

Classical: $\chi \ll 1$

QED: $\chi \simeq 1$

Counter-propagation

Co-propagation

Interaction at 90 deg.

How much energy can be converted from e- to photons in a laser - electron beam scattering?

LUXE could achieve up to 70% conversion efficiency to gamma-rays, and potentially reach a chi~2

$$\chi \sim \xi_e \left[\text{GeV} \right] \times \frac{a_0}{100}$$

Gemini

1021

Intensity [W / cm²]

10²⁰

 10^{23}

 $E_0 = 53 \text{ GeV}$

10²²

A fraction of radiated photons decays into electron-positron pairs

Example for FACET-II parameters

I nC electron beam gives ~ 0.2 pC of positrons

How many BW pairs to expect in LUXE?

Estimate based on a published scaling for a 30 fs pulse

Assuming laser intensity I~I0²⁰ W/cm²

positrons ~ (0.001 - 0.01) # electrons

T. Blackburn et al., PRA **96**, 022128 (2017)

Our modeling capabilities

- Full-scale QED-PIC simulations for the laser-electron beam scattering configuration.
- Modeling of the photon-laser collision for the bremsstrahlung configuration.