


OPPP/BPPP@LUXE

Compton $e + n\omega \rightarrow e' + \gamma$ $\gamma + n\omega \rightarrow e^{+}e^{-}$

- ► XFEL electrons
 - energy: 17.5 GeV, N_e per Bunch: 6×10^9 , using only 1 bunch out of 2700 in the train, bunch length: 25 µm & emittance ~1.4 mrad×mm (beam-spot is σ_{xyz} = $5\times5\times24$ µm³)
- ► <u>Conversion target (BPPP only)</u>: Tungsten with thickness X/X₀=1%, Emitted photon's energy distribution according to equation 13 in <u>Tony's paper</u> (also in PDG)
- <u>Laser</u>: Ti-Sapphire, energy: 0.35-7 J, shot duration: 35 fs, spot size: 10 μm, ω=1.55 eV (800 nm), *I*=0.1-2×10²⁰ W/cm², pulse frequency: up to 10 Hz
- ► Collision angle (e/ γ & ω): θ = π /12

Tentative plan

- November 2019: finish design and funding
- Early 2021: start of phase0 installation
- ► 2021-2022 / 2022-2023: phase0 data taking (~2-3 weeks/year)
- ► 2023/2024: phase1 installation and phase0 data analysis
- ▶ 2025-2027: phase1 data taking (~2-3 weeks/year)

Collaboration (as of March 2019):

- Germany: DESY, University of Hamburg, University of Freiburg,
 Helmholtz-Institut Jena, Helmholtz-Zentrum Dresden Rossendorf
- United Kingdom: University College London
- Israel: Weizmann Institute, Tel Aviv University