

SPONSORED BY THE

Federal Ministry of Education and Research Deutsche Forschungsgemeinschaft

DFG

SFB 676 - Project B2

SUSY Parameter Determination at LHC using Kinematic Fits

C. Autermann, J. Draeger, U. Gebbert, G. Kaussen, K. Kaschube, B. Mura, F. Nowak, N. Pietsch, <u>C. Sander</u>, P. Schleper, M. Schröder, T. Schum, J. Thomsen

Fittino Workshop – 30th October 09

Part I: Inclusive distributions sensitive to model parameters

- Weak boson and top production rates
- Invariant multi jet masses

Part II: SUSY mass determination using kinematic fits

- Definition of over constrained problem
- Alternative fitting technique (genetic algorithm)
- First results
- Further discriminating variables

Summary and outlook

- $\int \bar{q} \cdot R$ -parity conserved:
 - SUSY particles are produced in pairs
 - Cascade decay down to stable LSP
 - $\not\!\!\!E_T$
 - large number of jets
 - jet pairs compatible with weak gauge boson masses
 - Fully hadronic decay mode has large branching ratio

Two goals:

- (1) Discover SUSY at the LHC
- (2) Determine model parameters of underlying theory

UH

Ц,

Part I Inclusive Variables

30th October 09

W/Z Boson Identification

- Jet algorithm: iterative cone 0.5
- Jet cuts $p_T > 20~{
 m GeV}$ and $|\eta| < 2.5$
- Candidates: dijets with

 $70 \text{ GeV} < M_{\text{inv}} < 110 \text{ GeV}$

• Large combinatorial background

- Low efficiency at small boson p_T due to small jet reconstruction efficiency
- Low efficiency at large boson p_T due to jet merging

Friederike Nowak

Supression of Combinatorial Bg

Discriminating variables:

- θ^* : angle (in the *W* rest frame) between a *W* jet and the flight direction
- p_T of W candidate
- Angle between \mathbb{E}_T and W candidate
- \rightarrow Reduction of combinatorial background by factor up to ~3
- If *W* candidate can be combined with third jet to $m_{top} \rightarrow top$ candidate

Constrain Parameter Space

- Scan hypothesis and compare (χ^2 test) with pseudo data (here: $m_0 = 800$ GeV and $m_{1/2} = 600$ GeV)
- Boson candidate rate contains information in addition to absolute event rate \rightarrow larger parts of the parameter space can be excluded

UH

Ĥ

Search for other discriminating variables:

- Hadronic decay of squarks: invariant trijet mass distribution
- No sharp peak but upper and lower mass edge (due to unmeasured LSPs)
- Non-degenerated squark mass spectra: define only 1. and 2. generation as signal

- *W/Z* candidate combined with one of two p_T hardest jets (large mass gap between \tilde{q} and $\tilde{\chi}^{\pm}$)
- Up to 20 combinations per event
- Start with small S/B of ~1/100

Ulla Gebbert

30th October 09

Kinematic Fits for SUSY

Reconstruction of Mass Edges

correlated variables

- Use likelihood ratio method to separate signal from background
- Improve S/B from ~1/100 to ~1/10
- Background might be "signal like"

Constrain Parameter Space

- Scan over hypotheses
- Compare with pseudo data (here: $m_0 = 600$ GeV and $m_{1/2} = 400$ GeV) via binned maximum Likelihood (hypotheses normalized to data)
- Shape of trijet mass distribution provides enough information to constrain the parameter space

30th October 09

Kinematic Fits for SUSY

UH

Ц,

Part II Susy Mass Determination using Kinematic Fits

30th October 09

Kinematic Fits for SUSY

11

Reconstruction of full kinematics of SUSY events \rightarrow access to masses

- For one event: More unknowns (LSP momenta, SUSY masses) than constraints
 - (p_T balance, invariant masses)
- For more events: some unknowns (SUSY masses) are common → Problem can be over constrained
- Possible approach: Number of unknowns equals number of constraints → Look at parameter space covered by solutions
 Cheng, Gunion, Han, Marandella and McElrath 07

Cheng, Gunion, Han, Marandella and McElrath 07 Webber 09

• Our approach: Constrained least square fit of many events taking into account uncertainties of measurements

UHI I

Our hope: significant fraction of SUSY events with rather similar decay chains (degenerated masses, dominant branching ratios)

Potential problems: • Many jets → huge combinatorial bg (7 jets: 1260 combinations)

- Effect of SM and SUSY backgrounds
- Detector resolution and acceptance
- Initial and final state radiation
- No perfect mass degeneration
- Width of virtual particles

For N events:

4 global unknowns (SUSY masses)

N×6 local unknowns (2 LSPs)

 $N \times 7$ local constraints:

30th October 09

Over constrained for N > 4

Kinematic Fits for SUSY

[•] p_x , p_y

Method for constrained fits: Method of Lagrangian Multiplier

Invariant mass constraints in general not linear

- \rightarrow Linearization via Taylor expansion
- \rightarrow Iterative solution

Problems:

- Linearization of constraints only good approximation "near" solution → if "away" from solution iterative procedure might results in too large or too small steps, or even wrong direction
- Definition of convergence criterion

Used fitting code: KinFitter

- C++ implementation ... (V. Klose and J. Sundermann)
- ... of **ABCFIT** from ALEPH collaboration (O. Buchmüller and J. B. Hansen)
- Additional modifications (step scaling and scaling of constraints)

UH

- Formulation of constraints as additional X^2 term \rightarrow "cost function"
- Interpret cost function as $\chi^2 \rightarrow$ carefully chosen errors

$$\chi_{M^2}^2 = \left(\frac{M_{\text{inv}}^2(j_1, j_2, j_3) - M^2}{\sigma_{M^2}}\right)^2 \quad \text{and} \quad \chi_{p_{x/y}}^2 = \left(\frac{\sum_{\text{all particles}} p_{x/y}}{\sigma_p}\right)^2$$

Minimize cost function: gradient, simplex, LBFGS, simulated annealing and genetic algorithm (GA)

GA: Final state 4-momenta are genome of individual; jet combination is one additional gene. Fitness function (here X^2) defines which individual is fittest

Algorithm: 1) Create first generation of individuals (starting population)

- 2) Select best fitting individuals
- 3) Create new individuals by selecting randomly two parents and inherit randomly genes from either one or other parent
- 4) For each child mutate each genome with small probability
- 5) Back to step 2) until convergence

Advantage: no linearization needed \Leftrightarrow Disadvantage: high computational cost

Counting unknowns and constraints:

- 4 jets + 1 lepton = 15 measured parameters
- 1 neutrino = 3 unmeasured parameters
- 6 constraints (p_x , p_y , $2 \times M_W$ and $2 \times M_{top}$)

Combinatorics:

- No b-tagging used
 - \rightarrow 12 possible jet configurations

Event generation and detector simulation:

- **Pythia6** generated events including ISR and FSR
- Each final state jet smeared according to typical jet momentum and angular resolutions at ATLAS/CMS
- Jet/lepton selection cuts: Four jets and one lepton with
 - $p_T > 20 \text{ GeV}$
 - $|\eta| < 3.0$

30th October 09

Kinematic Fits for SUSY

UН

Ц,

30th October 09

Proof of Principle: Semi-Leptonic $t\overline{t}$

Resolution of fitted neutrinos:

Scenario:

- No bg from other processes
- Full combinatorial bg
- ISR and FSR
- Detector resolution and acceptance

Genetic algorithm:

Right jet combinations has smallest χ^2 for **8523** of 13386 events

KinFitter:

Converged for 12917 of 13386 events

Right jet combinations has smallest χ^2 for **8194** events

→ Similar performance of both methods for neutrino resolution

Kinematic Fits for SUSY

Proof of Principle: Semi-Leptonic $t\overline{t}$

- **Comparable** and **reasonable** results for both algorithms
- Increase at lowest fit probabilities due to non-Gaussian tail of invariant mass distributions

UΗ

Ĥ

SUSY Sample

225312

5.765

3.604

2807

9.149

2.613

1281

8.876

2.457

Entries

• mSUGRA test point:

• Parameters:
$$m_0 = 230 \text{ GeV}, m_{1/2} = 360 \text{ GeV}$$

 $A_0 = 0, \tan \beta = 10, \operatorname{sign} \mu = +$

• Masses:
$$m_{\tilde{q}} \approx 810 \text{ GeV}, m_{\tilde{g}} \approx 860 \text{ GeV}$$

 $m_{\chi_1^{\pm}} \approx 273 \text{ GeV}, m_{\chi_1^0} \approx 147 \text{ GeV}$

• Cross section at LHC:
$$\sigma_{tot} = 7.8 \text{ pb}(LO)$$

• Branching ratios:
$$Br(\chi_2^0 \to h^0 \chi_1^0) \approx 85\%$$

 $Br(\chi_1^\pm \to W^\pm \chi_1^0) \approx 97\%$

- **Pythia6** generated events including ISR and FSR
- Each final state jet smeared according to typical jet momentum and angular resolutions at ATLAS/CMS
- Jet selection cuts: 7 jets with
 - $p_T > 30 \,\,{\rm GeV}$
 - $|\eta| < 3.0$
- → Dominant background of other SUSY processes (S/B ~ 1/40)

Fit of SUSY Events with Genetic Algorithm

UHI H

Reduction Combinatorial Background

Similar probability distribution of SUSY background:

- "Signal like" cascade topologies, e.g. decays via heavier charginos or neutralinos
- Signal cascades but different squark mass (3rd generation)
- Signal cascades but one soft jet replaced by ISR jet
- Huge jet combinatorics

Fit probability distribution flat for signal (slight systematic shift toward higher probabilities due to combinatorics)

Background peaks at lower values: cut on 0.1(0.3) improves B/S from ~45 to ~19(~14)

- No SM bg
- Full SUSY bg
- Full combinatorial bg
- ISR and FSR
- Detector resolution and acceptance
- Mass hypothesis = true masses

30th October 09

Kinematic Fits for SUSY

UH

i i

- Huge combinatorial background \rightarrow Large invariant mass combinations, e.g.
- In rest frame of SUSY particles: angular distribution $\cos \theta^*$ of decay products with respect to flight direction of decaying particle should be ~isotropic (for spin 0)
- $\cos \theta^*$ for typical background 4-vector configurations are not uniformly distributed (smaller angles preferred)

Many decay angles in SUSY cascades → Use event kinematics to reduce combinatorial bg reduction

 $\mathcal{L} = p \cdot$

 $N_{\rm decays}$

0.2

0.4

0.6

 $\cos \theta * (\chi_1^{\pm}/\chi_2^0)$

UH

ήř

λT

- Fix gluino and neutralino mass to true values
- Vary two remaining masses (squark and chargino)

$$\log \mathcal{L} = \sum_{i=1}^{N_{\text{tot}}} \log \mathcal{L}_i \text{ with } \mathcal{L}_i = \mathcal{L}_{\text{cut}} \text{ for } \mathcal{L}_i < \mathcal{L}_{\text{cut}}$$

- No SM bg
- No SUSY bg
- Full combinatorial bg
- ISR and FSR
- Detector resolution and acceptance

Mass Scan

• Scan mass hypothesis

 Concordance between maximum likelihood and true values (bias due to non perfect momentum balance) UΗ

Ĥ

Summary:

- Various distributions or rates provide additional information about SUSY parameters, but are convoluted by detector effects
- Genetic algorithm yields comparable results to Lagrangian Multipliers and is well suited for highly non linear problems
- Kinematic fits provide a powerful tool to reconstruct SUSY cascades
- Invariant mass constraints reduce combinatorial background of signal cascades $(0.08\% \rightarrow ~45\%)$
- Combinatorial SUSY background dominant for studied mSUGRA scenario \rightarrow further discriminating variables needed, e.g. $\cos \theta^*$

Outlook:

- Further discrimination of signal against SUSY bg
- Include final states with leptons (reduced combinatorics)
- Fit more than one hypothesis
- Study other models than one specific SUSY scenario

Backup

30th October 09

Kinematic Fits for SUSY

26

Genetic Algorithm - Schematic Picture

UHI #

