Cascade Decays, Shapes and Fittino

Jonas Lindert and Ben O'Leary, in collaboration with Herbi Dreiner and Michael Krämer

RWTH Aachen University and Bonn University

Fittino Workshop, DESY, October 30, 2009

Outline

Introduction Variation around mSUGRA SPS1a Phase space ambiguities Conclusion

Outline

Introduction Signatures and Cascade Decays Observables

Variation around mSUGRA SPS1a

Phase space ambiguities Shapes New invariant mass endpoints

Conclusion

Signatures and Cascade Decays Observables

Cascade Decays

- Measurement of masses and spins possible using invariant mass distributions: m_{ll} , m_{qll} , $m_{ql_{nar}}$, $m_{ql_{far}}$ and $m_{qll}(\theta > \pi/2)$.
- Standard cascade:

- ▶ I_{near} and I_{far} experimentally not distinguishable $\rightarrow m_{ql}(high), m_{ql}(low).$
- ► Due to R-Parity conservation always two cascade decays per process.
- ► Light flavours degenerate. Distinction for third flavour necessary.

Edges

- ► Purely kinematics → "model independent". But: Need for certain hierarchy,
- ► Standard endpoints: m_{ll}^{max} , m_{ql}^{max} , m_{ql}^{max} (high), m_{ql}^{max} (low).
- ► Analytical inversion formulas available. May yield ambiguities between different phace space regions.
- ► Intensively studied (e.g. Miller et. al., 2005, hep-ph/0410303 & hep-ph/0510356).

Shapes

- \blacktriangleright Analytical formulas available including spin effects \rightarrow model dependent.
- Shapes highly disturbed by BR, cuts, background, quasi-degenerate squarks, combinatorics etc.

Rates

Ben talked about yesterday

Variation around mSUGRA SPS1a

We vary one mSUGRA paramter at a time around SPS1a within errors of Fittino (LE, LHC10 prospects as inputs)

					Parameter	$\sigma imes \textit{BR}[pb]$
					SPS1a	1.45
Parameter	Nom. Val.	Fit Val		Frror	M_0+	1.47
Mo [CoV]	100	06.74	+	/ 17	M_0-	1.52
M [GeV]	250	90.74 040 0		2 5	$M_{1/2}+$	1.24
$\frac{101_{1/2}}{100}$ [GeV]	250	240.0 0.75	T T	3.3 4 75	$M_{1/2} -$	2.26
$A [C_{A}/]$	10	106.0		4.75	A_0+	2.21
A ₀ [Gev]	-100	-100.8	T	50.5	A_0-	0.82
					aneta+	0.82
					aneta-	3.83

- ▶ M_0 , $M_{1/2}$, A_0 are varied within 3σ . tan β is varied within 1σ .
- Variations in σ × BR mostly smaller than 50%. But much bigger effect possible (i.e. tan β−).

Variation around mSUGRA SPS1a: Results

 $m_{1/2} \pm 3\sigma$

 $A_0 \pm 3\sigma$

• Luminosity $\approx 15 - 20 \ fb^{-1}$ @ 14 TeV.

 Shapes of invariant mass distributions seem to be quite robust under variation of SUSY parameters - at least in the SPS1a corner of parameter space.

Shapes New invariant mass endpoints

Phase space ambiguities

- ► Using only m_{ll}^{max}, m_{ql}^{max}, m_{ql}^{max}(high), m_{ql}^{max}(low), there are exact mimic points all over the mSUGRA paramter space (only mass differences are properly constrained). These exact mimic points are not mSUGRA.
- Employing analytical shape formulas we perform a scan over the $m_0 m_{1/2}$ SPS1a plane (s. hep-ph/0611259).
- We measures mass-differences (μ) and differences in shape (D).

$$\mu = \frac{\sum_{i} |m_{i}^{\text{false}} - m_{i}^{\text{true}}|}{m_{i}^{\text{true}}}$$

- There are ambiguities almost all over the considered parameter space.
- In general fairly small mass-differences between degenerate solutions.
- Along wedge in the plane mass differences are bigger.
- Scenarios with very different masses might be distinguishable by comparesion of cross sections.

Shapes New invariant mass endpoints

Solving ambiguities using shapes

$$D = \frac{1}{2N} \sum_{i=1}^{N} \int_{0}^{m_i^{max}} |f_i(m) - g_i(m)| dm$$

- ► Fairly constant around D ≈ 0.08.
- Along wedge in the plane distributions change rapidly between different phase space regions/analytical forms.
- ► Wedge in µ scan does not correspond this region.
- There might be regions with small mass differences but big differences in shape.

Shapes New invariant mass endpoints

Solving ambiguities using shapes

For SPS1a:

- $\mu \approx 0.41$ (low).
- ► *D* ≈ 0.024 (low).
- SPS1a and its mimic not distinguishable by shapes.
- Stable in variations and concerning mimic points.
- Analytical shapes?

masses / GeV	$m_{\tilde{\chi}_1^0}$	$m_{\tilde{l}_R}$	$m_{\tilde{\chi}^0_2}$	$m_{\tilde{q}_L}$
real	97.23	142.81	180.1D	564.52
mimic	112.88	160.80	196.46	584.29
edges / GeV	m_{\parallel}^{max}	m_{all}^{max}	m _{al} ^{max} (high)	m _{al} ^{max} (low)
	80.38	450.37	391.89	316.15

Shapes New invariant mass endpoints

Solving ambiguities using shapes

Shapes New invariant mass endpoints

Solving ambiguities using shapes

masses / GeV	$m_{\tilde{\chi}_1^0}$	$m_{\tilde{l}_R}$	$m_{\tilde{\chi}_2^0}$	$m_{\tilde{q}_L}$
real	140.598	241.576	263.725	779.589
mimic	103.051	116.138	219.745	736.296
edges / GeV	m ^{max}	m _{all} ^{max}	m _{al} ^{max} (high)	m _{al} ^{max} (low)
	86.03	620.68	596.57	294.29

Shapes New invariant mass endpoints

Solving ambiguities using shapes?

Solving ambiguities using different endpoints?

- Piecewise endpoint definitions due to near-far lepton ambiguity.
- Goal: Construct new inv. mass distribution exhibiting symmetry $m_{j\ell_{near}} \leftrightarrow m_{j\ell_{far}}$
- New invariant mass distributions:

$$\begin{split} m_{\ell\ell} &\to \left(m_{\ell\ell}^{max}\right)^2 = m_D^2 \, R_{CD} \left(1 - R_{BC}\right) \left(1 - R_{AB}\right) \\ m_{j\ell_n}^2 &\cup m_{j\ell_f}^2 \to \left(M_{jl(u)}^{max}\right)^2, \quad \left(m_{jl(u)}^{max}\right)^2 \\ m_{j\ell_n}^2 &+ m_{j\ell_f}^2 \to \left(m_{j\ell(s)}^{max}\right)^2 \equiv m_D^2 (1 - R_{CD}) (1 - R_{AC}) \\ m_{j\ell_n}^2 &- m_{j\ell_f}^2 \mid \to \left(m_{j\ell(d)}^{max}\right)^2 \equiv \left(M_{jl(u)}^{max}\right)^2 \end{split}$$

- Endpoints lineraly independent in all parameter space.
- ► Inverted mass relations pose only a two-fold ambiguity → Easy to solve (different methods).
- Set of new invariant mass distributions introduced by Matchev et. al. (0906.2417).

Shapes New invariant mass endpoints

Numerical example: SPS1a

	SPS1a	mimic
$m_{\tilde{\chi}_1^0}$	97.2	112.9
m _{jr}	142.2	160.8
$m_{\tilde{\chi}_2}$	180.1	196.5
$m_{\tilde{q}_l}$	564.5	584.3
m ^{max}	80.4	80.4
$m_{il(high)}^{max}$	391.9	391.9
m ^{max} il(low)	316.1	316.1
mill	450.4	450.4
$m_{jll(\theta > \frac{\pi}{2})}^{min}$	216.0	210.3
$m_{il(u)}^{max}$	326.0	316.1
$M_{il(u)}^{max}$	391.9	391.9
$m_{il(s)}^{max}$	450.4	450.3
$m_{il(d)}^{max}$	391.9	391.9
$m_{jl(p)}^{max}$	318.3	318.4

Figure: $m_{ll}, m_{jl(u)}, m_{jl(s)}$ and $m_{jl(d)}$ for SPS1a. purely exclusive + full event reconstruction.

Shapes New invariant mass endpoints

Numerical example: SPS1a

Figure: SPS1a. purely exclusive + full event reconstruction.

Figure: SPS1a. full sample + ordinary combinatorics.

Conclusion

Shapes

- Shapes of invariant mass distributions seem to be quite robust under variation of SUSY paramters - at least in the SPS1a corner of parameter space.
- ► There are exact mass mimic points all over the parameter space.
- Mimic Points hard to distinguished by invariant mass distribution shapes or additional endpoints.
- Solve jet combinatorics?