Overview over the Capabilities (and missing pieces?) of the Fittino Code

Philip Bechtle

October 29th 2009

What Fittino is

2 What do we have?

- Theory
- Observables
- Technologies

What Fittino is

2 What do we have?

- Theory
- Observables
- Technologies

Aims of Fittino

- Fit the (N)MSSM parameters to the observables from all possible sources: LHC, ILC, Tevatron, B-factories, etc.
- Fit high-scale (mSUGRA, GMSB, AMSB) and low-scale models (MSSM,NMSSM)
- Bottom-up approach
- If the user wishes to test unbiased measurement: no prior knowledge of the parameters at any step
- Provide easy user interface for measurements, parameter definitions and output
- Goals:
 - Show that unambiguous parameter determination without human bias is possible
 - Determine precision of parameter measurements
 - Test the necessary experimental and theoretical precision
 - Study comparisons of models: MSSM vs. NMSSM etc.

What Fittino isTheoryWhat do we have?ObservablesWhat's missing?Technologies

What Fittino is

2 What do we have?

- Theory
- Observables
- Technologies

Theory Observables Technologies

Models

- mSUGRA, GMSB
- MSSM24
- MSSM24 with arbitrary other assumptions
- NMSSM
- No CMSSM, no models with partial unification (e.g. fit tan β , m_0 , A_0 , μ , M_1 , M_2 , M_3) \rightarrow need codes
- everything can be fitted wit hand without an arbitrary number of SM parameters

Theory Observables Technologies

Calculators for Predictions

- Everything which works with SLHA
- Experience with SPheno, micromegas, "mastercode", SuSpect, SoftSUSY
- Some requirements:
 - Code should not write any SLHA output in case of internal error
 - Code should, at best, always exit with retuurn value \neq 0 in case of internal error
 - For spectrum calculators: Please return every relevant particle mass, also the likes of m_W etc.
- can use different calculators in parallel for different observables, hard-coded...
- Missing: Select different calculators in the input file for each observable

Theory Observables Technologies

Observables and other Inputs

Observables:

• Fittino can fit to any combination of the following observables:

- Masses of SM and MSSM particles
- Edges in mass spectra
- Particle widths
- Branching fractions
- Cross-sections
- Any product of cross-sections and/or branching fractions
- Any ratio of the above
- LE-Observables: $b
 ightarrow s\gamma$, $(g-2)_{\mu}$, relic density, $\Delta m_s/\Delta m_d$, etc.
- Correlations among observables can be specified
- Limits on masses and BR of unobserved particles/decays can be specified
- HiggsBounds for model-independent limits on Higgs bosons from Tevatron and LEP

Theory Observables Technologies

Very Short Example Input File

```
*********
###
           Fittino input file
                                        ###
*********
massh0
                      115.237 GeV +- 0.05 GeV +- 0.5 GeV # comment
massTop
                      178.0 GeV +- 0.3 GeV
correlationCoefficient massh0 massTop 0.05
                                                    # guatsch
# etc
edge 1 massNeutralino1 massNeutralino2 263.5 GeV +- 1.2 GeV alias 1
sigma ( ee -> Neutralino1 Neutralino2, 1000.,0.8,0.6 ) 7.678 fb +- 2.0 fb
BR ( h0 -> Bottom Bottom~ ) 0.8033 +- 0.01 +-(lumiErr) 0.05
BR ( h0 -> Charm Charm~ ) 0.05 +- 0.02 +-(lumiErr) 0.01
nofit cos2PhiL
                                                0.62865 + - 0.0005
# etc
fitParameter TanBeta
                           10.0
fixParameter Mu
                           358.6 GeV
universality MSelectronR MSmuR
# etc
LoopCorrections
                   on
CalcPullDist
                   off
```

What Fittino is Theory What do we have? Observables What's missing? Technologies

Technologies

• To find the χ^2 minimum

- Tree-level estimate + MIGRAD in MINUIT: fast but unreliable, if not started very close to the true minimum
- Tree-level estimate + Simulated Annealing: not too slow, very reliable detection of the global minimum

• To map the parameter space

1D or 2D scans:

fast, but no correct treatment of the correlations to fixed parameters

Markov Chain:

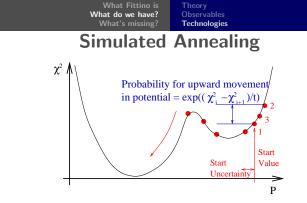
n-dim. Probability map of the available parameter space

• To determine the uncertainties

• MINOS in MINUIT:

Slow and not very reliable

• Automatic generation of pull fits:


Very reliable and (at least on a farm) not slower than MINOS

- To get a feeling for the parameters and observables
 - Visualize the effect of variations of each parameter on observable χ^2 's

Markov Chains

- Build a chain of parameter points \vec{x}_i using tMetropolis-Hastings
- Calculate a likelihood $\mathcal{L}(\vec{x_i})$ for each point. Here: $\mathcal{L}(\vec{x_i}) = e^{-\chi^2}$
- Randomly pick a new point \vec{x}_{i+1} near \vec{x}_i , using a proposal distribution $Q(\vec{x}_{i+1}; \vec{x}_i)$
- Calculate $ho = \mathcal{L}(\vec{x}_{i+1})/\mathcal{L}(\vec{x}_i)$ for symmetrical $Q(\vec{x}_{i+1}; \vec{x}_i)$
- $\bullet\,$ If $\rho>$ 1, accept the new point and add it to the end of the chain
- If ho < 1, accept it with probability ho, else, add $\vec{x_i}$ again to the chain
- For the efficiency of the algorithm: Optimize Q(x_{i+1}; x_i), e.g. gaussian distribution around x_i with widthes σ_i
- Bayesian: Point density is proportional to the probability distribution
- \bullet Frequentist: Look for minimal χ^2 and $\Delta\chi^2 < 1, 4, 5.99, \ldots$
- Extremely effective sampling: needed number of steps scales with the number of dimensions D instead of n^D

- Works as Markov Chains, but with different potential (Boltzmann) and with reducing the temperature with time
- Aim is not sampling of the parameter space, but reliable convergence towards the global minimum
- Use this together with Toy Fits: If theory code is stable (not always the case), this is free of any asumptions and renders all (non-linear) correlations and all uncertainties (without assumptions on gaussianities or else)

What Fittino is

2 What do we have?

- Theory
- Observables
- Technologies

- Observables:
 - Shapes. maybe not necessary at LHC, but who knows
 - A general framework to include asymmetries
 - Systematic Uncertainties: Other shapes than gaussian?
- Models:
 - CMSSM (no fundamental problem, easy to implement if awailable by spectrum calculator etc)
 - Complex MSSM (too far away?)
 - R-parity violating models
 - No fundamental develpment necessary for the above, just need/use theory codes
 - More problematic: SM alone \rightarrow no SLHA!
 - Everything beyond SUSY is difficult simply because of the lack of SLHA. Need an input framework capable of handling SLHA and other formats?
- Minimization:
 - Quite well equipped, but other developments would be great to test, mainly for potential speedup, such as
 - Genetic Algorithms, Swarms, ...

