Treatment of the ambiguity in particle assignments

Takanori Kono University of Hamburg/DESY

Fittino workshop

Introduction

- Extraction of masses of SUSY particles relies on indirect measurements like kinematic edges
 - Kinematic edge depends on the masses of particles involved in the cascade decay
 - Usually make a reasonable assumption on which particles are involved $q_1 = \sqrt{\ell_1^{\pm}}$

- Motivation
 - See whether we can extract SUSY parameters without these assumptions
 - Run many fits with different interpretation of particles in the decay chain, and see whether we can get the correct interpretation based on the chi2

Model and input observables

- Model: mSUGRA
- Data:
 - Measurements expected at LHC (10 fb-1)
 - Data generated at SPS1abenchmark point

LHC observables

	Observable	Nominal			
Observables from:		Value	1 fb^{-1}	$10~{\rm fb}^{-1}$	$300~{\rm fb}^{-1}$
lhc/fittino.in.lhc_obs10	m_h	109.6		1.4	0.1
	m_t	172.4	1.1	0.05	0.01
	$m_{\tilde{\chi}_1^{\pm}}$	180.2			11.4
Pair production of slepton	$\sqrt{m_{\tilde{\ell}_L}^2 - 2m_{\tilde{\chi}_1^0}^2}$	148.8			1.7
and squarks	$m_{\tilde{g}} - m_{\tilde{\chi}_1^0}$	507.7		13.7	2.5
$\widetilde{a} \rightarrow hh \rightarrow hh \widetilde{\gamma}_{\cdot}^{0}$	$\sqrt{m_{ ilde q_R}^2-2m_{ ilde \chi_1^0}^2}$	531.0	19.6	6.2	1.1
8 700_1 $700\chi_2$	$m_{ ilde{g}}-m_{ ilde{b}_1}$	88.7			1.5
$\rightarrow bbl^{\pm}l_{R}^{\mp} \rightarrow bbl^{\pm}l^{\mp}\widetilde{\chi}_{2}^{0}$	$m_{ ilde{g}}-m_{ ilde{b}_2}$	56.8			2.5
$a \rightarrow a \widetilde{a}^{0} \rightarrow a l^{\pm} \widetilde{l}^{\mp} \rightarrow a l^{\pm} l^{\mp} \widetilde{a}^{0}$	$m_{\ell\ell}^{ ext{max}}(\tilde{m_{ ilde{\chi}_1^0}},m_{ ilde{\chi}_2^0},m_{ ilde{\ell}_R})$	80.4	1.7	0.5	0.03
$q_L \to q\chi_2 \to qi \ i_1 \to qi \ i \ \chi_1$	$m_{\ell\ell}^{ ext{max}}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_4^0},m_{ ilde{\ell}_L})$	280.6		12.6	2.3
$a_{\tau} \rightarrow a \widetilde{\gamma}_{\tau}^{0} \rightarrow a \tau^{\pm} \widetilde{\tau}_{\tau}^{\mp} \rightarrow a \tau^{\pm} \tau^{\mp} \widetilde{\gamma}_{\tau}^{0}$	$m_{ au au}^{ ext{max}}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_2^0},m_{ ilde{ au}_1})$	83.4	12.6	4.0	0.73
q_L , q_{χ_2} , q_{χ_1} , q_{χ_1} , q_{χ_1} , χ_1	$m^{ ext{max}}_{\ell\ell q}(m^{ extstyle 0}_{ ilde{\chi}^0_1},m^{ extstyle 1}_{ ilde{q}_L},m^{ extstyle 0}_{ ilde{\chi}^0_2})$	452.1	13.9	4.2	1.4
	$m_{\ell q}^{\mathrm{low}}(m_{\tilde{\ell}_R},m_{\tilde{q}_L},m_{\tilde{\chi}_2^0})$	318.6	7.6	3.5	0.9
	$m^{ ext{high}}_{\ell q}(m_{ ilde{\chi}^0_1},m_{ ilde{\chi}^0_2},m_{ ilde{\ell}_R},m_{ ilde{q}_L})$	396.0	5.2	4.5	1.0
· · · · · · · · · · · · · · · · · · ·	$m_{\ell\ell q}^{ m thres}(m_{ ilde{\chi}_1^0},m_{ ilde{\chi}_2^0},m_{ ilde{\ell}_R},m_{ ilde{q}_L})$	215.6	26.5	4.8	1.6
$b_1 \rightarrow b \widetilde{\chi}_2^0 \rightarrow b l^{\pm} l_1^{+} \rightarrow b l^{\pm} l^+ \widetilde{\chi}_1^0$	$m_{\ell\ell b}^{\mathrm{thres}}(m_{\tilde{\chi}_1^0}, m_{\tilde{\chi}_2^0}, m_{\tilde{\ell}_B}, m_{\tilde{b}_1})$	195.9		19.7	3.6
	$m_{tb}^{w}(m_{t}, m_{\tilde{t}_{1}}, m_{\tilde{\chi}_{1}^{\pm}}, m_{\tilde{g}}, m_{\tilde{b}_{1}})$	359.5	43.0	13.6	2.5
$\widetilde{g} \to t t_1 \to t b \widetilde{\chi}_1^{\pm}$	$\frac{\mathcal{B}(\tilde{\chi}_{2}^{0} \to \tilde{\ell}_{R}\ell) \times \mathcal{B}(\tilde{\ell}_{R} \to \tilde{\chi}_{1}^{0}\ell)}{\mathcal{B}(\tilde{\chi}_{2}^{0} \to \tilde{\tau}_{1}\tau) \times \mathcal{B}(\tilde{\tau}_{1} \to \tilde{\chi}_{1}^{0}\tau)}$	0.076	0.009	0.003	0.001
$\widetilde{g} \to b\widetilde{b_1} \to bW\widetilde{t_1} \to bbW\widetilde{\chi}_1^{\pm}$	$\frac{\mathcal{B}(\tilde{g} \to \tilde{b}_2 b) \times \mathcal{B}(\tilde{b}_2 \to \tilde{\chi}_2^0 b)}{\mathcal{B}(\tilde{g} \to b_1 b) \times \mathcal{B}(\tilde{b}_1 \to \tilde{\chi}_2^0 b)}$	0.168			0.078
$\widetilde{g} \rightarrow b\widetilde{b_1} \rightarrow tb\widetilde{\chi}_1^{\pm}$	Fittino workshop	2009/10	0/29		4

List of interpretations

qll final state $\left(\widetilde{\chi}_{2}^{0},\widetilde{l}_{R},\widetilde{\chi}_{1}^{0}\right)$

- Change combination of neutralinos involved (x6)
 - Right-handed selectron to left-handed (x2)

 \rightarrow 12 combinations

- Same as above.

 $q \tau \tau$ final state $\left(\widetilde{\chi}_{2}^{0}, \widetilde{\tau}_{1}, \widetilde{\chi}_{1}^{0}\right)$

- → 12 combinations – qll and qtautau final states correlated through the measurement of $\frac{Br(\tilde{\chi}_{2}^{0} \rightarrow \tilde{l}_{R}l) \cdot Br(\tilde{l}_{R} \rightarrow \tilde{\chi}_{1}^{0}l)}{Br(\tilde{\chi}_{2}^{0} \rightarrow \tilde{\tau}_{1}\tau) \cdot Br(\tilde{\tau}_{1} \rightarrow \tilde{\chi}_{1}^{0}\tau)}$
 - \rightarrow 144 combinations for qll and qtautau

qll final state (2) $\left(\tilde{\chi}_{4}^{0}, \tilde{l}_{L}, \tilde{\chi}_{1}^{0}\right)$

- Same as above \rightarrow 12 combinations

 $ec{q_1} \ / \ \ell_2^{\pm} \ / \ \ell_1^{\mp} \ ec{\chi}_1^0 \ ec{\chi}_2^0 \ ec{\ell}_{
m R}^{\mp} \ ec{\chi}_1^0 \ ec{\chi}_1^0$

Fit with Markov chain

- Tried 144+12=156 fits with different interpretation of observed data
 - Done by modifying the fittino input file
 - For example, m_{II} edge calculation would be done using different particle masses
 - Try these combinations blindly without thinking whether a particular interpretation is physically sensible or not
- Run the fit using Markov chain to get results quickly
 - Takes a few hours for each setting
 - 52 out of 156 cases, had chi2=100 M, probably mass hierarchy was unphysical

χ^2 of different fits

Particle assignment

Correct assignment

Fittino workshop

2009/10/29

qll2 ($\chi^0_4 \rightarrow \chi^0_3$)

qll (correct), qtautau ($\chi^0_2 \rightarrow \chi^0_3$)

qll final state (2)

There is only one edge measurement ($m_{\rm II}$) used in the fit

All these combinations give not too big chi2

In what I'm doing now, I don't check whether we the decay is allowed or not

It would be nice if we could also take that into account (e.g. expected number of events)

Summary

- Tried different interpretation of particles involved in the cascade decay
 - The lowest chi2 was found for the correct interpretation
 - Fit failed for 52 cases out of 156
- Different interpretation of qll(2) final state
 - Only one mass edge used as an input
 - Several interpretations would predict similar values, therefore give rather low chi2
- Different interpretation of qll final state
 - Many kinematic edges are used in the fit which makes it more difficult to have low chi2 with a wrong interpretation
 - Fitted parameters may differ a lot from the true value (especially tan β and A_0)

Mass edges with different particles

