Inclusion of HiggsBounds

Fittino Workshop

Felix Bührer¹

Uni Freiburg

October 29, 2009

Table of contents

Preface

HiggsBounds

The implementation

One example

Further information

Preface

- ► This work was done as a project of this year's summer student program here at DESY
- ▶ supervised by Toni Hartin & Philip Bechtle
- ▶ I decided not to go into to much detail about the implementation and just give you an overview of what has been done and how to use it

HiggsBounds

- ▶ Fortran code for testing theoretical predictions of models with arbitrary Higgs sector against exclusion bounds obtained by LEP and Tevatron Higgs-searches
- ▶ No Higgs found (yet)
 - → Limits on indivdual cross-sections
- ▶ HiggsBounds provides easy access to all relevant Higgs exclusion limits with about 40 implemented analyses from LEP and the Tevatron (more to come)
- ▶ Possibility to combine LEP and Tevatron results
- ▶ 3 different operation modes:
 - ▶ online version (http://www.ippp.dur.ac.uk/HiggsBounds)
 - command line mode
 - subroutine mode via library
- ▶ using HiggsBounds via the external library makes it possible to benefit from future upgrades and /or bugfixes without changing the fittino interface

HiggsBounds

- ▶ The basic workflow is as follows:
 - user provides model input for all neutral higgs bosons
 - HiggsBounds calculates model prediction for signal topology
 - channel with the highest statistical sensitivity is determined
 - comparison between model and observed topology for specific channel
 - decision if scenario is excluded or not
- My task: invoke the external HiggsBounds library from within fittino to decide whether a specific point in the parameter space is already excluded with 95% C.L.

HiggsBounds

- ▶ 3 different input options: But only one ("effc" Effective couplings approximation) possible to implement
- ▶ Input required by HiggsBounds:
 - Number of neutral Higgs bosons: n_H
 - ▶ Higgs masses: m_{h_k} in the right order!
 - ▶ total widths: $\Gamma_{tot}(h_k)$
 - normalised squared effective Couplings:

$$\begin{split} \left(\frac{g_{h_k ZZ}^{model}}{g_{HZZ}^{SM}}\right)^2, \left(\frac{g_{h_k WW}^{model}}{g_{HWW}^{SM}}\right)^2, \left(\frac{g_{h_k \gamma \gamma}^{model}}{g_{H\gamma \gamma}^{SM}}\right)^2, \left(\frac{g_{h_k gg}^{model}}{g_{Hgg}^{SM}}\right)^2, \\ \left(\frac{g_{h_k bb}^{model}}{g_{Hbb}^{SM}}\right)^2, \left(\frac{g_{h_k \tau \tau}^{model}}{g_{Hb\tau}^{SM}}\right)^2, \left(\frac{g_{h_k h_j Z}^{model}}{g_{HH\tau \tau}^{SM}}\right)^2 \end{split}$$

▶ Branching ratios: $BR_{model}(h_k \rightarrow h_j h_j)$

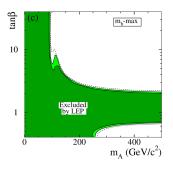
The implementation

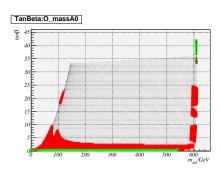
- 2 new switches in the input file
 - UseHiggsBounds
 - ► HBWhichExpt Which results are being taken into account (LEP, Tevatron or both). If not set 'LandT' is assumed
- if switch UseHiggsBounds is set to On → fittino initializes HiggsBounds char* whichexpt = const_cast<char*>(yyHBWhichExpt.c_str()); initialize_higgsbounds_(&nH,whichexpt);
- ▶ nH is the number of neutral Higgs bosons in your model (at the moment only possible for nH = 3 (MSSM))
- ▶ The subroutine initialize_higgsbounds reads in all the tables. This is done only once.

The implementation

- ▶ in every iteration step HiggsBounds tests if the scenario is excluded or not by invoking the function int call_HiggsBounds(int nH, double* parameterVector) that gathers all the needed information from SPheno (see above) brings them in the right order and calls the HiggsBounds subroutine run_higgsbounds_effc
- ▶ if HiggsBounds returns 1 (excluded) χ^2 is set to 1,11111111 · 10¹⁰ (similar to the way problems with the calculator are treated)
- \blacktriangleright But distinguishable \to possibility to compare exclusion plots from fittino with "official" exclusions from e.g. LEP-collaborations to test if everything works as expected

Cheat sheet

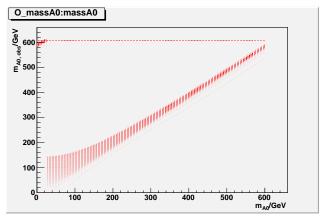

To use HiggsBounds you need to have:


- ▶ An up-to-date version of the fittino trunk
- ▶ The compiled HiggsBounds library (either F77 or F90 version)
- ▶ both the path to libgfortran and libHB set in the Makefile
- ▶ the precompiler-flag USELIBHB set
- UseHiggsBounds switched on in your input file

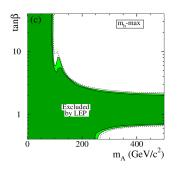
If you don't want to use it, just don't set USELIBHB (Every change concerning HiggsBounds is only compiled if this is set)

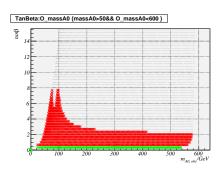
One example

▶ comparison between the exclusion plot for the m_h-max benchmark scenario



▶ Does not really match expectation


The problem


▶ Plot of $m_{A,run}$ vs. $m_{A,pole}$

ightharpoonup Cut on m_{A0}>50 GeV & m_{A0, obs}<600 GeV

▶ good agreement in the sampled regions

Drawbacks / Future work

- ▶ Because of the limited time I had, this is
 - not the fastest
 - not the nicest
 - ▶ and definitely not the most flexible or general implementation (Only models with 3 neutral Higgs bosons, output parameters are hardcoded, ...)
- With HiggsBounds including more analyses (new Tevatron results, charged Higgs) also changes in the implementation have to be made to benefit from them
- ▶ Inclusion of full χ^2 information from upcoming versions of HiggsBounds.

Further information

- ► HiggsBounds:
 - $\blacktriangleright \ http://www.ippp.dur.ac.uk/HiggsBounds$
 - arXiv:0811.4169v3 [hep-ph]
- ▶ MSSM neutral Higgs searches at LEP, arXiv:hep-ex/0602042v1