

Mark Terwort Fittino Workshop Hamburg 29.10.2009

Parameter determination of GMSB models with photon final states using the ATLAS detector

- The GMSB model
 - \rightarrow Basics and benchmark scenario
 - \rightarrow Neutralino lifetime and sparticle mass measurements
- Parameter determination with Fittino
 - \rightarrow Expectations and performance
 - \rightarrow Parameters from "realistic" measurements
 - \rightarrow Alternative data interpretations
- Summary and outlook

- SUSY breaking: mediated via SM gauge interactions (GMSB) from hidden/secluded sector to electroweak scale
- Intermediate messenger sector
- Model described by 6 parameters (in addition to Standard Model)

Par.	Description	
Λ	Effective SUSY breaking scale	
M _{mess}	Messenger mass scale	
Ν	N Number of messenger multiplets	
tanβ	Ratio of Higgs VEVs	
sign(μ)	μ) Sign of Higgs mass parameter	
\mathbf{C}_{grav}	Scale factor of Neutralino lifetime	

Properties:

- Lightest SUSY particle: Goldstino/Gravitino (m ~ O(eV))
- Next-to-lightest SUSY particle: Neutralino or Slepton (NLSP)
- Missing energy from Gravitino
- Final state: hard photons, leptons

GMSB model – final state

Investigated final state:

- NLSP can have non-vanishing lifetime
- Delayed photons in final state

Idea:

- Additional discriminating variable: arrival time of photon in ECal (clustertime) (resolution: a few 100 ps)
- Fit clustertime distribution to separate signal from background
- Measure Neutralino lifetime with calibration curve

Neutralino lifetime measurement

- Fit Gaussian plus Landau to BG plus signal
 - \rightarrow Use Landau width for calibration curve
 - → Simulate samples with different lifetimes and kinematics
 - \rightarrow Scale lifetime with C_{grav} parameter
 - \rightarrow Measure width of each sample
- Plot Landau widths as function of lifetime, fit calibration curve

	T _{theo} [NS]	τ _{meas} ±stat.±syst. [ns]	
<	0.37	$0.35 \pm_{0.03}^{0.03} \pm_{0.12}^{0.08}$	
	1.5	1.6 $\pm_{0.1}^{0.1} \pm_{0.1}^{0.1}$	
	3.3	$3.6 \pm_{0.2}^{0.3} \pm_{0.1}^{0.1}$	>
	5.9	$5.7 \pm_{0.6}^{0.8} \pm_{0.2}^{0.3}$	
	11.2	8.2 $\pm_{1.8}^{5.4} \pm_{0.6}^{1.1}$	

Invariant mass distributions

 \tilde{G}

jet

 \tilde{g}, \tilde{q}

- SUSY mass determination via endpoints in invariant mass distributions (functions of particle masses)
- Event selection for 7.5 fb⁻¹
- Select opposite-sign-same-flavour (OSSF) lepton pairs, subtract OSOF BG
- Example:

 $M_{II,max,theo} = 106.4 \text{ GeV}, M_{II,max,fit} = 108.0 \pm 4.3 \text{ GeV}$

Can the model parameters be determined with the measured observables?

- \rightarrow Perform a fit of the model to SUSY observables
- \rightarrow Obtain model parameters and their uncertainties

Par.	Description	
٨	Enters masses linearly	
M _{mess}	Enters masses logarithmically/lifetime quadratically as product with C_{grav} (and Λ)	
Ν	Is fixed to 1 due to photon final states	
tanβ	oes not enter directly the measured observables	
sign(μ)	Is fixed to 1	
\mathbf{C}_{grav}	Enters lifetime quadratically	

Expectation:

- \rightarrow Λ can be measured well
- \rightarrow M_{mess} and C_{grav} can only be measured as a product
- \rightarrow tan β can not be measured

- Observables (taken from GMSB2 benchmark scenario):
 - \rightarrow Neutralino lifetime (used Neutralino width in the code)
 - \rightarrow 4 invariant mass endpoints (formulas implemented in Fittino code (necessary???))
 - \rightarrow Values have to be shifted from ISAJET to SPheno prediction to avoid bias
- Used simulated annealing, 400 toy fits per run
 - \rightarrow Steering parameters optimized to avoid local minima
- SPheno: some fixes for Neutralino width (thanks to Werner)

Observable	theoretical value (ISAJET)	measured value	$v_{\rm ISAJET} - v_{\rm SPheno}$
$M_{l^+l^-}^{\max}$	106.4 GeV	108.0±4.3 GeV	-2.0 GeV
$M_{l^+l^-\gamma}^{ m max}$	191.6 GeV	189.6±3.8 GeV	-2.1 GeV
$M_{l^{\pm}\gamma}^{\text{near,max}}$	107.9 GeV	104.4±3.7 GeV	-7.2 GeV
$M^{ m far,max}_{l^{\pm}\gamma}$	158.3 GeV	161.9±3.9 GeV	2.5 GeV
$ au_{ ilde{\chi}_1^0}$	3.3 ns	3.6±0.3 ns	0.6 ns

GMSB fit - performance

- \rightarrow Assume 1% uncertainty
- \rightarrow 2 sets of starting values (red and blue)
- → Parameter estimate given by mean, uncertainty given by width of Gaussian

Plots for
$$\Lambda = 90$$
 TeV, $M_{mess} = 500$ TeV,
 $C_{grav} = 30$, $\tan\beta = 5$, $sgn(\mu)=+$

GMSB fit – tan β , C_{grav} and M_{mess}

- M_{mess} and C_{grav} strongly correlated \rightarrow Only product is stable
- No clear result yet for tanβ

Idea:

Measure the real breaking scale

$$\rightarrow \mathsf{F} = \Lambda \cdot \mathsf{M}_{\mathsf{mess}} \cdot \mathsf{C}_{\mathsf{grav}}$$

GMSB fit - "realistic" results

- ◆ Fit model to measurements of Neutralino lifetime and invariant mass endpoints
 → Central values well determined
 - → Underlying SUSY breaking scale determined precisely from measurements!

GMSB fit - "realistic" results

- χ^2 distribution in good agreement with expectation (#dof ~ 2)
- What happens when including LEObs?
 - → Shift values to GMSB benchmark prediction to avoid bias!
 - \rightarrow Again, χ^2 distribution looks good
 - → No improvement of parameter uncertainties

GMSB fit - interpretations

- → Invariant mass endpoints functions of particle masses!
- Example alternative:
 - Replace the second lightest Neutralino:

$$ilde{q}
ightarrow ilde{\chi}_{3}^{0} q
ightarrow ilde{l}_{R}^{\pm} l^{\mp} q
ightarrow ilde{\chi}_{1}^{0} l^{+} l^{-} q
ightarrow ilde{G} \gamma l^{+} l^{-} q$$

 \rightarrow Calculate χ^2_{min} correlations

- (How) Many other alternatives possible (?)
 - \rightarrow How to quantify?
 - \rightarrow How to scan?
 - \rightarrow see Takanoris talk

- GMSB possible extension of Standard Model
- Di-photon analysis:
 - \rightarrow Use kinematic endpoints to measure SUSY particle masses
 - \rightarrow Use ECal timing to measure Neutralino lifetime
- Fit of GMSB model to observables
 - \rightarrow Precise determination of underlying SUSY breaking scale
 - \rightarrow Distinction between interpretations possible (more work needed)
- What about other parameters?
 - \rightarrow tan β determination with stau mass measurement?
 - → Inclusion of stau mass didn't give a good result... (more work?)
 - \rightarrow Other observables? Higgs? Suggestions?

Mass spectrum, lifetime formula

