INPUTS & REQUIREMENTS FOR THE FORWARD PHOTON DETECTOR SYSTEM

Borysova Maryna (KINR)

07/03/19

LUXE workshop

OUTLINE

- Iayout for FDS of the LUXE experiment
- HICS and the absolute number of forward photons
- method of study the photon-conversion data
- spectra from MC
- Geant4 simulation for the converter

LAYOUT FOR FDS OF THE LUXE EXPERIMENT

Photons produced at IP1 proceed down their own beamline through the converter foil and the tracking spectrometer,

PHOTONS FROM THEORETICAL CALCULATIONS

HICS DIFFERENTIAL TRANSITION PROBABILITY VS RADIATED PHOTON ENERGY per initial particle per 100 fs 800 nm laser. 17.5 GeV initial electrons, 0.9*Pi crossing angle

data produced of HICS/IPW/circularly polarized with Mathematica by Anthony Hartin 4/2/2019

$$\begin{split} \Gamma_{\rm HICS} = & -\frac{\alpha m^2}{\epsilon_{\rm i}} \sum_{n=1}^{\infty} \int_{0}^{u_n} \frac{du}{(1+u)^2} \left[{\rm J}_n^2(z_u) - \frac{\xi^2}{4} \; \frac{1+(1+u)^2}{1+u} \left({\rm J}_{n+1}^2 + {\rm J}_{n-1}^2 - 2 \; {\rm J}_n^2 \right) \right] \\ z_{\rm u} \equiv & \frac{m^2 \xi \sqrt{1+\xi^2}}{k \cdot p_i} \left[u(u_n-u) \right]^{1/2}, \quad u_n \equiv & \frac{2(k \cdot p_i) \; n}{m^2(1+\xi^2)}, \quad \xi \equiv & \frac{e|A|}{m} \end{split}$$

Increasing ξ increases the HICS rate, but suppresses the photon energy (the mass shift)

ABSOLUTE NUMBER OF PHOTONS

differential transition rate per electron per 100 fs.

multiply it by the number of electrons in the bunch (6.25e+09) and by the laser pulse duration (t=35 fs)

ξ	1e 35 fs (1BX)	Νγ
0.5	2.39	1.49255E+10
1	8.43	5.26758E+10
1.5	16.29	1.01825E+11
2	24.41	1.52579E+11

The transverse structure of the laser field is not taken into account in the data and it is assumed that the laser field is uniform in transverse direction and it is essentially the same for all electrons -> It could be accounted for in MC

If the target thickness is 1% of X0 at this laser intensities ~ 1E8-1E9 e+e- pairs would enter the pair spectrometer in each laser pulse

6

THE ELECTRON AND POSITRON SPECTRA FROM CONVERSION OF FORWARD PHOTONS INTO THE PAIRS FOR DIFFERENT ξ FROM GEANT4

- target material W
- thickness 35 um
- 1E8 photons

FORWARD PHOTONS IN GEANT4

METHOD OF PHOTON SPECTRUM RESTORATION

$f(Ee) = \int \sigma(E\gamma, Ee) g(E\gamma) dE\gamma$

PHOTONS FROM MC

DETECTOR REQUIREMENTS

- Number of photons for HICS process for different xi (for 0.1 and 0.6) for nominal XFL beam (6.25e+09) gives 1e+10 and 5e+10 correspondingly
- CONSIDERING Number of particles (e- or e+) in detector to be ~ e+3
- Then the target is supposed to be~ e-6 X0
 - * Jet Target
 - * Thin Wire Target ~e-2 X0 which geometry makes angular selection
- It is possible to decrease the Nominal Number of e in a bunch to 6.0e+7 with special gun tuning

N OF PHOTONS FROM MC

• emulating the wire, detector on distance of 10m from IP

		Ngamma in case of foil				
		ξ	1e 100 fs	1e 35 fs	Νγ	
$I_{mto} = 1(50 + 650 + 6) \times 000$	2	0.5	6.82	2.39	1.49255E+10	
Integral(-5.0e-6, 5.0e-6)*0.0e (double) $521512 = 5e+5$		1	24.08	8.43	5.26758E+10	
	<-less but still a lot	1.5	46.55	16.29	1.01825E+11	
		2	69.75	24.41	1.52579E+11	

GEANT4 SIMULATION FOR THE WIRE CONVERTER

GEANT4 SIMULATION FOR THE WIRE CONVERTER

GEANT4 SIMULATION FOR THE WIRE CONVERTER

d from Target to Magnet 30 cm

WHAT'S DONE & WHAT'S NEXT

- Estimated the absolute number of forward photons: from theory and MC+GEANT4 simulation: very high fluencies
- It is possible to restore the position of kinematic edges with good accuracy
- Non-uniform Laser Intensity (ξ) makes the kinematic edges from different n not visible, especially for high ξ
- Preliminary was studied the feasibility of usage W wire as converter target. For nominal XEFL beam the $\xi = 0.1 \ 10 \ m$ from IP the number of e ~8e4.
 - for reduced intensity further could be reduced by tuning the XEFL gun this number will be ~e2-e3
 - also to go further from IP
 - to scan HICS photons in transverse plane with wire target
 - to study gas jet target

N OF PHOTONS

Integral 5.7366667e+09

Integral(-0.5e-5,0.5e-5) <- 10 um of W wire
(double) 5.6544765e+08
Integral(-0.5e-5,0.5e-5)*0.003 <-0.3% X0
(double) 1696343.0 =2e+6 <-still a lot</pre>

TESTING: COMPTON-LIKE

DIFFERENTIAL CROSS-SECTION FROM GEANT4

PHOTON AND ELECTRON SPECTRA FROM MC

dN/dE

Peak $\xi = 0.8$

PHOTON AND ELECTRON SPECTRA FROM MC

GAMMA AND ELECTRON SPECTRA FOR $\xi=0.5$

27

GAMMA AND ELECTRON SPECTRA FOR $\xi=2.0$

TOTAL X-SECTION

XCOM: Photon Cross Sections Database (The National Institute of Standards and Technology (NIST))

A web database which can be used to calculate photon cross sections for scattering, photoelectric absorption and pair production, as well as total attenuation coefficients, for any element, compound or mixture ($Z \le 100$), at energies from 1 keV to 100 GeV.

G4BetheHeitlerModel from Geant4

total cross section per atom in GEANT4

 $E_{\gamma} =$ incident gamma energy, and $X = \ln(E_{\gamma}/m_ec^2)$ The total cross-section has been parameterised as :

$$\sigma(Z, E_{\gamma}) = Z(Z+1) \left[F_1(X) + F_2(X) Z + \frac{F_3(X)}{Z} \right]$$

with :

$$F_1(X) = a_0 + a_1 X + a_2 X^2 + a_3 X^3 + a_4 X^4 + a_5 X^5$$

$$F_2(X) = b_0 + b_1 X + b_2 X^2 + b_3 X^3 + b_4 X^4 + b_5 X^5$$

$$F_3(X) = c_0 + c_1 X + c_2 X^2 + c_3 X^3 + c_4 X^4 + c_5 X^5$$

The parameters a_i, b_i, c_i were fitted to the data [hubb80]. This parameterisation describes the data in the range :

$$\frac{1 \le Z \le 100}{E_{\gamma} \in [1.5 \text{ MeV}, 100 \text{ GeV}]} \quad \left\} \quad \frac{\Delta \sigma}{\sigma} \le 5\% \text{ with a mean value of} \approx 2.2\%$$

PHOTON SPECTRA VS LASER INTENSITIES

plot from Anthony

POSITRON SPECTRA VS TARGET THICKNESS IN GEANT4

Positron spectra vs target thickness

ELECTRON SPECTRA: 35μ VS 300 μ

32

ABSOLUTE NUMBER OF PHOTONS

multiply the rate by the mass of the electron in eV, by 510998, then we will get differential transition rate per electron per 100 fs.

multiply it by the number of electrons in the bunch (6.25e+09) and by the laser pulse duration (t=35 fs) (t/100fs)

The transverse structure of the laser field is not taken into account in the data (and xi is Gauss max) and it is assumed that the laser field is uniform in transverse direction and it is essentially the same for all electrons

LAYOUT FOR THE E-144 EXPERIMENT

Photons produced at IP1 proceed down their own beamline through the converter foil and the tracking spectrometer

CCD image sensors: pixel size 22.5*22.5 um

e-/e+ tracks were reconstructed using the 3 back planes of CCD's. All triplets of points from the back CCD planes of a given arm were tested to see if they fit a line intercepting a region near the center of the spectrometer magnet. This set of candidate tracks included many "fake" tracks from thermal noise, and combinatoric background of points from different particles.

No attempt was made to use the CCDs in the front plane of the spectrometer in this mode, since the high number of hits led to significant ambiguity in the projection from the back planes to the front.

[EEV, 1242*1152].

THE CLASSICAL BETHE-HEITLER PAIR SPECTRUM

The classical Bethe-Heitler formula is currently used: H.Bethe, W.Heitler, Proc.Roy.Soc.A146 (34)83

$$\Phi (\mathbf{E}_0) d\mathbf{E}_0 = \frac{\mathbf{Z}^2}{137} \left(\frac{e^2}{mc^2} \right)^2 4 \frac{\mathbf{E}_{0+}^2 \mathbf{E}_{+}^2 + \frac{2}{3} \mathbf{E}_0 \mathbf{E}_{+}}{(h\nu)^3} d\mathbf{E}_0 \left(\log \frac{2\mathbf{E}_0 \mathbf{E}_{+}}{h\nu mc^2} - \frac{1}{2} \right).$$

energies involved are large compared with mc²

The idea - to check if any photon spectrum could be restored if we have the classical BH distribution and characteristic shapes of photon spectrum

TESTING: COMPTON-LIKE Ee= $\int \sigma(E\gamma, Ee)g(E\gamma)dE\gamma$

$\int \sigma(E\gamma, Ee)g(E\gamma, p1, p2)dE\gamma$

fitting allows finding the parameters quite well :

FCN=	1309.19 FROM	HESSE STA	TUS=0K	39 CALLS	442 TOTAL
		EDM=9.7714	4e-09 STRAT	EGY= 1 ERROR	MATRIX ACCURATE
EXT	PARAMETER			STEP	FIRST
NO.	NAME	VALUE	ERROR	SIZE DEF	RIVATIVE
1	p0	0.00000e+00	fixed		
2	p1	3.71863e-05	1.18274e-07	7.47299e-08 -9.	55179e+00
3	p2	5.00872e+00	2.75457e-03	2.31805e-06 2.	53148e-02
4	р3	0.00000e+00	fixed		
5	p4	1.02419e-07	7.39607e-09	7.48765e-08** at	: limit **
6	p5	7.38500e+00	8.55688e-02	1.42343e-05 -1.	88485e-03
7	p6	2.16581e-09	1.14383e-09	3.41734e-06 8.	55195e-03

TESTING: COMPTON-LIKE

Ee = ∫ σ(Eγ, Ee)g(Eγ)dEγ

$\int \sigma(E\gamma, Ee)g(E\gamma, p1, p2)dE\gamma$

	C • .		1.1	r .	1.							
	FCN=1	145.218	FROM	HESSE	STATI	JS=0K			56 CA	LLS	1207	TOTAL
				EDM=4.	922396	e-08	STRAT	EGY=	1	ERP	OR MATRIX	ACCURATE
	EXT	PARAMET	ER						STEP		FIRST	
	N0.	NAME		VALUE		ERRO)R		SIZE		DERIVATIVE	
	1	p0		1.85584e	+05	3.1335	57e+04	7.8	9176e	-07	-3.96577e-	02
	2	p1		9.96061e	+05	9.5041	L3e+05	2.4	5175e	-06	1.51142e-	03
	3	p2		5.03997e	+00	3.5816	64e-03	2.9	7159e	-07	-1.51967e-	01
	4	pЗ		0.0000e	+00	fixe	ed					
3	5	p4		1.04141e	+04	1.8448	35e+03	3.3	0306e	-06	1.00640e-	02
	6	p5		7.55555e	+00	9.8704	1e-02	7.6	8131e	-03	-5.14074e-	04
	7	p6		2.78794e	+02	2.5097	/3e+02	1.6	0564e	-05	7.45705e-	05
	8	p7		2.31367e	-03	3.8460	06e-04	3.6	7255e	-07	-2.59769e+	00
	(Int_t	t) Ø					37					