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1 Motivational example: Instantons in Yang-Mills

theory

Consider SU(2) Yang-Mills theory on Euclidean R4 and action given by S =
− 1

2

∫
R4 tr(FµνF

µν)d4x. We want to �nd �nite action solutions to the classical
equations of motion. To do so, we �rst have to require that as our coordinate
|x| → ∞, the curvature Fµν = O( 1

|x|2 ). This means that Fµν → 0 in this limit

and as such the gauge �eld Aµ becomes pure gauge, i.e. Aµ → g−1(x)∂µg(x).
We must therefore asymptotically pick out a section g(x) ∈ SU(2) on the sphere
S3 at in�nity.

To obtain physically equivalent states, we have to quotient out by gauge trans-
formations that can be continuously deformed to the identity on the sphere at
in�nity, so that g̃(x) ∼ g(x) if we can �nd an h(x) such that g̃(x) = h(x)g(x)
and h(x) can be deformed to the identity on the asymptotic S3.

If we quotient by this action, the physically di�erent choices for g(x) are clas-
si�ed by the homotopy group π3(SU(2)) ' Z. This set of integers is also what
de�nes the instanton number of a classical solution to the equations of motion.

GOAL: The goal for this talk will be to understand what, for example, these
groups πn are and understand some calculational tools. Further applications
will be discussed in next talks.

2 What is a topology?

To discuss these homotopy groups, we �rst have to discuss some topology. The
�eld of topology is very extensive and I can only hope to give you an introduction
and some examples to understand the basic concepts in this talk.

Motivation to introduce topology

The �eld of topology is used to make the notion of 'nearness' mathematically
precise. If one has a space with a metric, one can de�ne rigourously what it
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means for two points to be near, but it turns out that many results do not
require a metric. They only depend on topology. In some sense, a topologi-
cal space is therefore a generalisation of a metric space. A topology should be
understood as all the opens of a space. More precisely, a topology is the following

De�nition A topological space (X, τ) is a pair of a set X and a family τ of
subsets of X such that

• The empty set ∅ and X are both contained in τ

• If U, V ∈ τ , then U ∩ V ∈ τ

• If {Ui}i∈I ⊂ τ for some possibly in�nite index set I, then
⋃
i∈I Ui ∈ τ

For concreteness, let us give some examples

Examples

1. Any set X with τ = {∅, X} de�nes a topological space. This is a strange
topology if one is used to metric spaces, because if our set X contains
at least two points, these two points can never be separated by non-
intersecting open neighbourhoods. This can always be done in a metric
space, for example. (Such a topology is known as non-Haussdor�.)

2. The Euclidean Rn with opens given by (in�nite unions) of open balls in
Rn

3. Topological manifolds: Any space X such that around each point x ∈
X, we can �nd a neighbourhood Ux that has the same topology as Rn
(homeomorphic, see next section). For example, X = Sn ⊂ Rn+1 inherits
this topology from Rn+1.

Notion of having the same topology

To de�ne what it means to have the same topology, we have to de�ne what it
means for a map f : (X, τX)→ (Y, τY ) between topological spaces to be contin-
uous. The de�nition of a continuous function between metric spaces is de�ned
such that the pre-image of an open set is again an open set. We therefore mimic
this de�nition of continuity:

De�nition A function f : (X, τX) → (Y, τY ) is called continuous i� for each
open U ∈ τY , the pre-image f−1(U) ∈ τX .

If the function f is a bijection and the inverse f−1 is also continuous, we call f
a homeomorphism and we say that the topological spaces (X, τX) and (Y, τY )
are homeomorphic. Let us give some examples

Examples
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1. The real line R with Euclidean topology and the semi-in�nite interval
(0,∞) are homeomorphic. One can see this by applying the map exp :
R → (0,∞) with inverse log : (0,∞) → R. Both of these maps are
continuous.

2. The cylinder S1×R is homeomorphic to the punctured plane R2−{0}. If
we parametrise R2−{0} as C−{0}, we can apply the map (t, x) 7→ ex+it.
This is continuous and has continuous inverse.

3. The Euclidean space Rn and the sphere Sn are not homeomorphic! One
can see this for example by the fact that Sn is compact, while Rn is not

4. The Euclidean space Rn and a single point {∗} are also not homeomorphic,
since {∗} is compact. However, these two spaces are homotopy equivalent
to each other! We will discuss this later.

Topological invariants

Topological invariants are properties or objects of topological spaces that only
depend on the topology up to homeomorphism. If such invariants for di�erent
spaces do not coincide, we can therefore immediately tell that these spaces are
not homeomorphic to each other. Examples include compactness, connected-
ness, the Euler characteristic, orientability of spaces, etc.

Topological invariants can be intrinsic to topology (e.g. compactness and con-
nectedness) or obtained by associating some other, often algebraic, structure
to a topology (e.g. the Euler characteristic and orientability). The homotopy
groups fall in the second class.

3 What are homotopies?

If we can associate an algebraic structure (e.g. a group) to topological spaces
X and Y in some way, often a continuous map f : X → Y induces a map
f∗ : A(X) → A(Y ) on the associated algebraic structures. Often these struc-
tures can be discrete, for example when A(X) is a discrete group. In this case,
one would expect f to induce the same map f∗ even if we continuously deform
f . This is the idea behind what we call a homotopy.

De�nition Given two topological spaces X and Y with continuous maps f0, f1 :
X → Y , we call F : X × [0, 1]→ Y a homotopy from f0 to f1 if it is continuous
and F (x, 0) = f0(x) and F (x, 1) = f1(x). We write f0 ∼ f1 if such a map F
exists.

Intuitively, we now want to call two spaces X and Y homotopy equivalent if
they have isomorphic algebraic structures. That is, if we have maps f : X → Y
and g : Y → X, they induce inverses g∗f∗ = idA(X) and f∗g∗ = idA(Y ). To

3



make this precise, we say

De�nition Two topological spaces X and Y are called homotopy equivalent
if there exist two maps f : X → Y and g : Y → X such that g ◦ f ∼ idX and
f ◦ g ∼ idY .

One should think about homotopy equivalent spaces as being obtained from
each other by 'squishing' or 'stretching'.

Examples

1. If two spaces are homeomorphic, they are also homotopy equivalent. The
converse is not necessarily true.

2. Rn is homotopy equivalent to a single point {∗}. One can check that
p(x) = ∗ and i(∗) = 0 indeed satisfy p ◦ i = id∗ and i ◦ p ∼ idRn through
F (x, t) = tx.

4 What are homotopy groups?

Consider a topological space X and all continuous functions f : [0, 1]n → X
such that the boundary ∂([0, 1]n) is mapped to a single point x0 ∈ X (known
as the base point). In other words, we are looking at all functions mapping Sn

into X with a given base point.

If we consider this space of functions up to homotopies, we obtain a space we
denote by πn(X,x0). It turns out that this space de�nes a group by concatenat-
ing maps together. We therefore call this the n-th homotopy group of X based
at x0. The homotopy groups are an algebraic structure associated to a topo-
logical space X and indeed, they only depend on X up to homotopy equivalence.

Additionally, if the space X is path-connected (which is equivalent to being
connected in the standard sense if we are looking at topological manifolds), the
groups only depend on x0 up to conjugation. We therefore often leave out the
base point x0.

Example: Calculating π1(S
1), i.e. the fundamental group of

S1

Consider S1 as the set {e2πit|t ∈ R}. To calculate π1(S
1), we will look at all

maps f : [0, 1]→ S1 such that f(0) = f(1) = 1. Such a map can always be writ-
ten as f(t) = e2πig(t) for some g : [0, 1] → R if we require g(1) − g(0) = n ∈ Z.
Without loss of generality we may assume g(0) = 0 so that g(1) = n.

It turns out that g̃ ∼ g i� g̃(0) = 0 and g̃(1) = n. In particular, this de-
�nes all maps f up to homotopy by the integer n, which is also known as the
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degree of the map f . In conclusion, we �nd π1(S
1) ' Z.

Generically, it is very di�cult to calculate homotopy groups. One method to
do so is through exact sequences.

5 What are exact sequences?

An exact sequence is a sequence of homomorphisms between (for our purposes)
groups Ai of the form ... →fn An →fn+1 An+1 → ... such that im(fn) =
ker(fn+1).

In some sense, any exact sequence is built up from short exact sequences, i.e.
exact sequences consisting of just three groups 0→ A0 →f1 A1 →f2 A2 → 0.

In the case of a short exact sequence, we �nd that

• The map f1 is injective, because ker(f1) = 0

• The map f2 is surjective, because im(f2) = A2

In particular, this means that there exists a map f̃2 : A1/im(f1)→ A2 induced
from f2 which satis�es ker(f̃2) = 0, since im(f1) = ker(f2). Therefore f̃2 is both
injective and surjective.

If f̃2 has an inverse which is also a group homomorphism, it de�nes an iso-
morphism A1/im(f1) ' A2. If we look at the special case where A0 = 0 is
trivial, we indeed �nd A1 ' A2.

Example Consider the sequence of homomorphisms 0 → Z →×n Z →modn→
Z/nZ→ 0. Then one checks that indeed ker(×n) = 0 and im(modn) = Z/nZ.
Additionally, if we pick m ∈ Z, then mn mod n = 0 and conversely, if some
k ∈ Z satis�es k mod n = 0, then k = mn for some m ∈ Z. Therefore, this
sequence is exact.

It turns out that if topological spaces �t together in a �bration, denoted by
F → E → B, we can associate the following exact sequence of homotopy groups
to this �bration:

...→ πn(F )→ πn(E)→ πn(B)→ πn−1(F )→ ...→ π1(B)→ π0(F )→ π0(E)→ π0(B)→ 0

In some sense, a �bration should be understood as the generalisation of a �bre
bundle. The map E → B de�nes a �bre bundle with �bre F over base space B.
The �bres are only required to be homotopy equivalent to each other.

Let us consider two examples of such calculations:
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Example 1: The Hopf �bration

It is known that one can de�ne a �bration U(1)→ SU(2)→ SU(2)/U(1), which
is a �bration of S3 ' SU(2) over S2 ' SU(2)/U(1) with �bre S1 ' U(1). We
already showed that π1(S

1) ' Z, but one can similarly show that πn(S
n) ' Z

through the degree of the map (or through the �bration SO(n)→ SO(n+1)→
Sn). Additionally, it is also known that πn 6=1(S

1) ' 0 and πm(Sn) ' 0 for
m < n. Our long exact sequence therefore splits as follows

...→ 0→ πn>2(S
3)→ πn>2(S

2)→ 0→ ...→ 0→ π2(S
2)→ π1(S

1)→ 0→ ...→ 0

and we �nd πn>2(S
3) ' πn>2(S

2) and π2(S
2) ' π1(S1).

Example 2: Coset spaces

If we have a group G with closed subgroup H < G, the map G→ G/H de�nes
a principal �bre bundle with �bre H. This therefore also de�nes a �bration
H → G→ G/H and we can apply the same machinery to relate the homotopy
groups of H, G and G/H. Note that the Hopf �bration is a special case of this
example. This exact sequence then takes the form

...→ πn(H)→ πn(G)→ πn(G/H)→ πn−1(H)→ ...→ π1(G/H)→ π0(H)→ π0(G)→ π0(G/H)→ 0
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