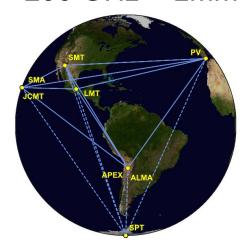
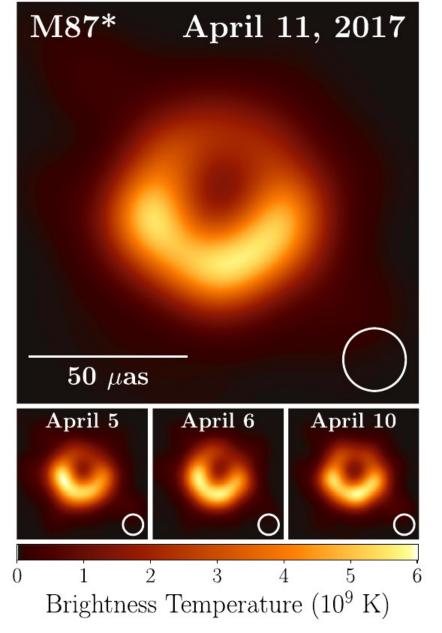
Event Horizon Telescope

- Distance: 17 Mpc = 55 Mly
- Mass: 6*10⁹ Ms
- Size: ~ 500 AU

$$50\mu as = 50 \times \frac{1}{60 \times 60 \times 60 \times 1000000} = 2 \times 10^{-10} rad$$


$$\theta_{\rm res} = 1.22 \frac{\lambda}{D}$$


Hubble:
$$\theta_{\rm res} = 1.22 \frac{0.5 \times 10^{-6} {\rm m}}{2.4 {\rm m}} \sim 0.05 {\rm as}$$

EHT:
$$\theta_{\rm res} = 1.22 \frac{10^{-3} {
m m}}{13000 \times 10^3 {
m m}} \sim 20 \mu {
m as}$$

Footprint on the Moon

200 GHz ~ 1mm

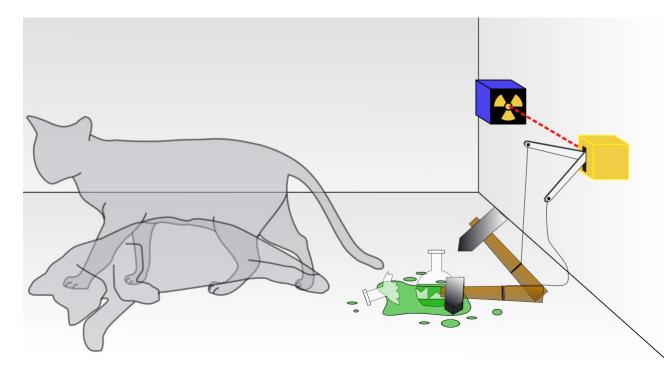
 $0.5\,\mathrm{MeV}$

Quantum reality

Radek Žlebčík

Tuesday, 2019, 4/23

Huttenstrasse 9, Zurich, figure of cat, place of Sch. 1921-1926 https://en.wikipedia.org/wiki/Schr%C3%B6dinger%27s_cat


Schrödinger's cat

The destiny of macroscopic object depends determined by quantum process

$$|\phi\rangle = \frac{1}{\sqrt{2}}(|h\rangle|\text{alive}\rangle + i|v\rangle|\text{dead}\rangle)$$

Quantum entanglement between the cat-state and polarisation of the gamma-photon

→ Tensor product to describe multiple dimensions

Schrödinger's cat – Copenhagen interpretation

- 1925-1927 by Bohr&Heisenberg
- Still commonly taught interpretation

• **U-evolution:** By Schrodinger equation, deterministic $|\phi\rangle = \exp\left(-\frac{i}{h}H(t-t_0)\right)|\phi_0\rangle$

 R-evolution: By wave function collapse to eigenvector (measurement), random

Before spin measurement:

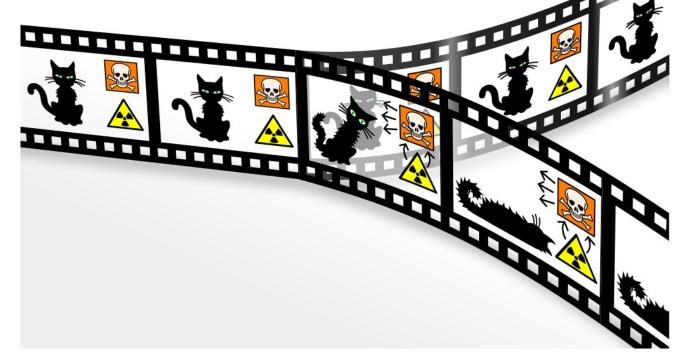
$$|\phi\rangle = a|+\rangle + b|-\rangle$$

After spin measurement only 2 possibilities $|+\rangle, |-\rangle$

$$s_z|+\rangle = +1|+\rangle$$

 $s_z|-\rangle = -1|-\rangle$

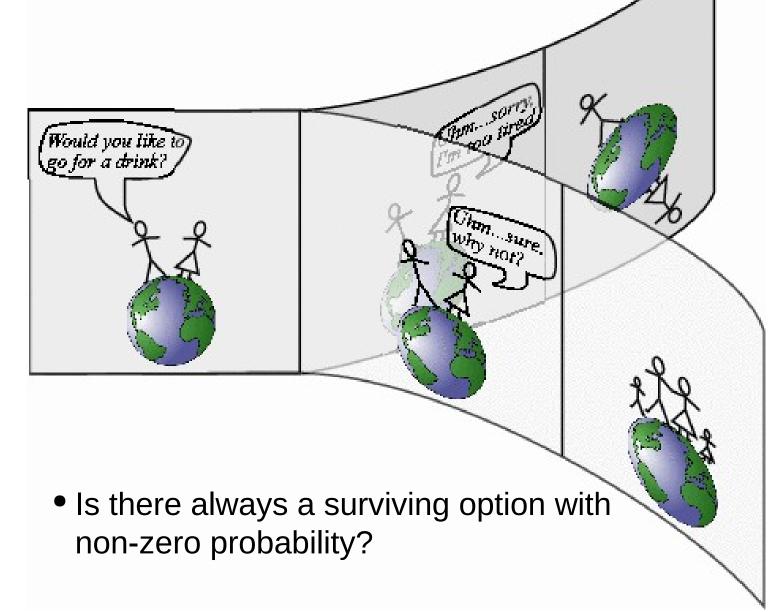
Schrödinger's cat – Many worlds interpretation


- 1957-1970s by Everett&DeWitt
- Today, the mainstream

• **U-evolution:** By Schrodinger equation, deterministic $|\phi\rangle = \exp(-\frac{i}{h}H(t-t_0))|\phi_0\rangle$

R-evolution removed

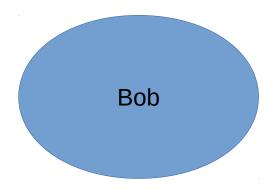
→ Single wave function to describe the state&detector&human&universe


 $|\phi\rangle = |\mathrm{photon}\rangle|\mathrm{cat}\rangle|\mathrm{observer}\rangle$

Schrödinger's cat & Quantum immortality

 Imagine periodically repeated
 Schrodinger's cat experiment with period 1minute

- There is always a universe branch where the cat is alive
 - → Immortality

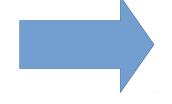


Quantum cryptography

 Using wave-function collapse to prevent Eve listen...

- Man(woman)-in-the-middle attack proof, if:
 - → Nature obeys quantum laws
 - → Eve is not able to impersonate Bob

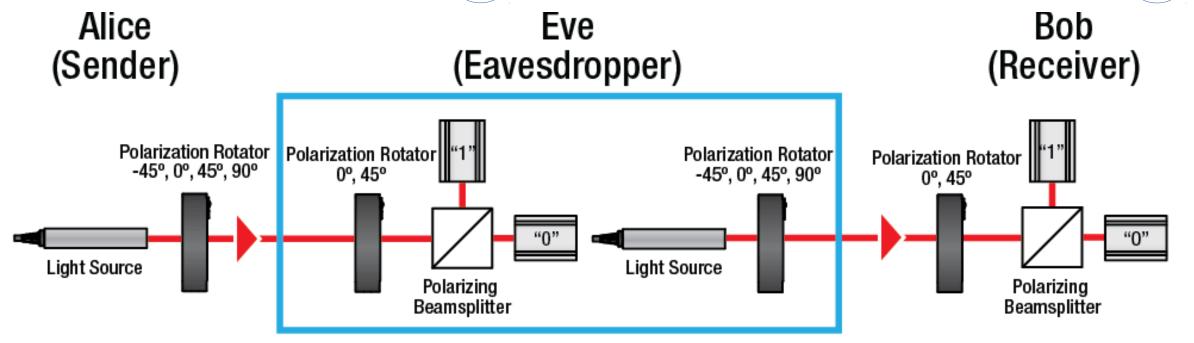
After the secure communication between Alice & Bob(or Eve) is established:


Alice is asking Ave:

What is our secret? (answer in form hash:135433password)

Eve cannot send the right answer

Eve is asking Alice:

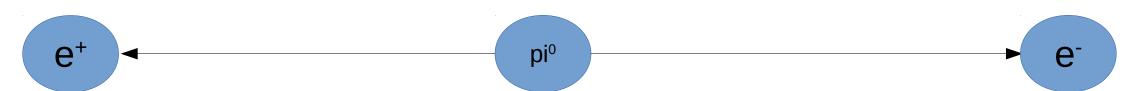

What is our secret? (answer in form hash:452454password)

Both Alice & Bob need to ask such questions to verify the second party

Alice send the correct answer, but Eve cannot reveal the password

Alice's random bit	0	1	1	0	1	0	0	1
Alice's random sending basis	+	+	×	+	×	×	×	+
Photon polarization Alice sends	1	-	>	1	>	7	7	-
Bob's random measuring basis	+	×	×	×	+	×	+	+
Photon polarization Bob measures	1	7	>	7	→	7	→	-
PUBLIC DISCUSSION OF BASIS								
Shared secret key	0		1			0		1

Quantum communication


• First intercontinental secure quantum video call (2016, Vienna & Beiging)

Quantum entanglement – non-locality

- The Einstein Podolsky Rosen Paradox
- Imagine $\pi^0 \to e^+e^-$

$$|e^+e^-\rangle = \frac{1}{\sqrt{2}} \left(|+\rangle|-\rangle - |-\rangle|+\rangle\right)$$

 When the spin of e⁺ is measured, the wave function of whole entangled system collapses → the result of e⁻ spin measurement is known Notice that when measurements space-time points are space-like the causality is relative

EINSTEIN ATTACKS QUANTUM THEORY

Scientist and Two Colleagues Find It Is Not 'Complete' Even Though 'Correct.'

SEE FULLER ONE POSSIBLE

Believe a Whole Description of 'the Physical Reality' Can Be Provided Eventually.

Quantum entanglement – Hidden parameters

Alice's Bob's pol. vec.

Bell: No physical theory of local hidden variables can ever reproduce all of the predictions of quantum mechanics.

$$C_e(a,b) = \frac{(N_{++} + N_{--}) - (N_{-+} + N_{+-})}{(N_{++} + N_{--}) + (N_{-+} + N_{+-})} \quad \text{Between (-1, 1)}$$

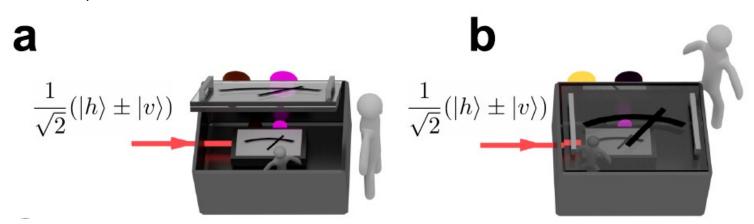
Quantum prediction:

$$C_q(a,b) = -a \cdot b$$

From Hidden Parameters:

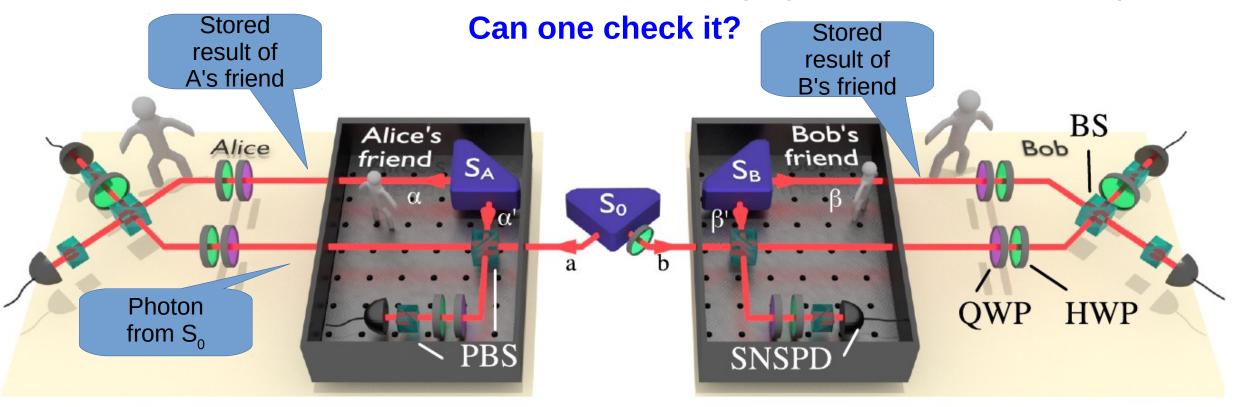
$$C_h(a,b) = \int A(a,\lambda)B(b,\lambda)p(\lambda)d\lambda$$

Bell inequality


$$C_h(a,c) - C_h(b,a) - C_h(b,c) \le 1$$

Is the wave function collapse relative, depending on the observer?

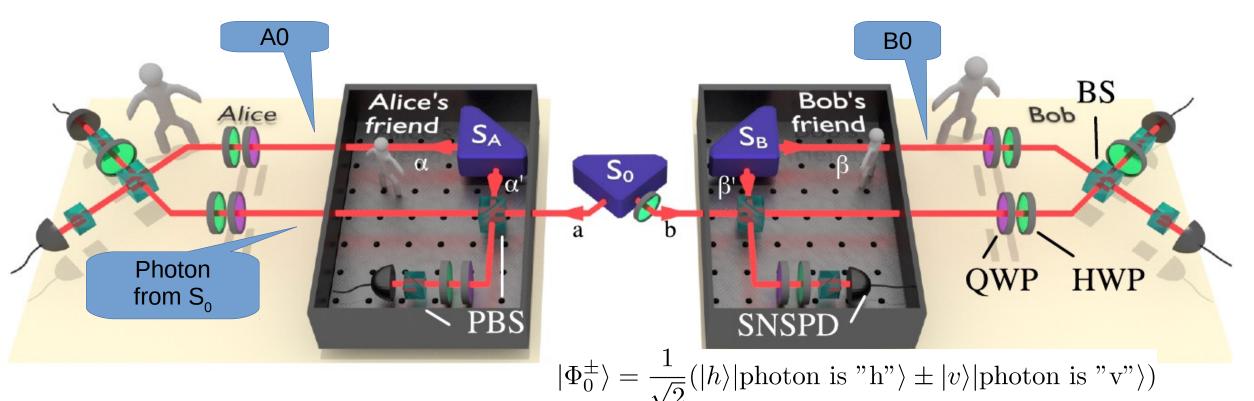
- From inside the lab the wavefunction collapsed
- From outside the photon+stored result in entangled state (no collapse)


Wave function of the whole laboratory

$$|\Phi_0^{\pm}\rangle = \frac{1}{\sqrt{2}}(|h\rangle|\text{photon is "h"}\rangle \pm |v\rangle|\text{photon is "v"}\rangle)$$

[arXiv:1902.05080]

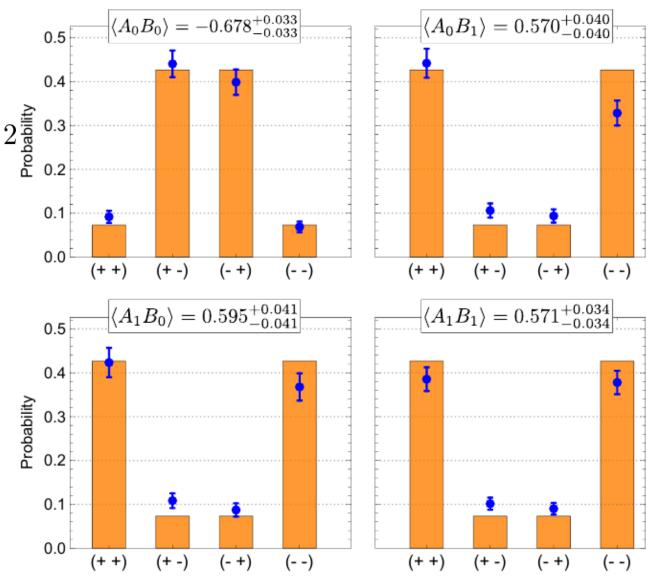
- From inside: The polarization of the photon was measured (collapsed) and result stored
- From outside: Photon is still in quantum superposition (together with observer)



Observer independent facts, then:

$$S = \langle A_1 B_1 \rangle + \langle A_1 B_0 \rangle + \langle A_0 B_1 \rangle - \langle A_0 B_0 \rangle \le 2$$

$$A_0 = B_0 = \mathbb{1} \otimes (\text{"photon is } h")\langle \text{"photon is } h"| - |\text{"photon is } v"\rangle \langle \text{"photon is } v"|),$$


$$A_1 = B_1 = |\Phi_{\text{photon/record}}^+\rangle\langle\Phi_{\text{photon/record}}^+|$$
$$-|\Phi_{\text{photon/record}}^-\rangle\langle\Phi_{\text{photon/record}}^-|.$$

Observer independent facts, then:

$$S = \langle A_1 B_1 \rangle + \langle A_1 B_0 \rangle + \langle A_0 B_1 \rangle - \langle A_0 B_0 \rangle \leq 2^{\frac{1}{20}}_{\frac{1}{20}} {}^{0.3}_{0.2}$$
 0.571 0.595 0.570 -0.678

$$S_{\text{exp}} = 2.416^{+0.075}_{-0.075}$$

Interpretation

One way to accommodate our result is by proclaiming that "facts of the world" can only be established by a privileged observer—e.g., one that would have access to the "global wavefunction" in the many worlds interpretation...

Is global wavefunction meaningful? In any case, not accessible,

→ Results relative wrt observer