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1 What is a Q-ball?

During this seminar series, we have learned mainly about Topological Solitons (TS), i. e. extended
objects which are a solution to the Equations of Motion (EOMs) of a Quantum Field Theory (QFT)
and are stable due to the conservation of some topological quantity. However, the seminar swansong
will be dedicated to a remarkable kind of Non-topological Solitons (NTS): the Q-ball.

Before proceeding with today's main topic, it is convenient to clarify the general properties of a
NTS. These are non-dissipative, extended in space solutions to the classical �eld equations that arise
in �eld theories with an unbroken global symmetry, which has an associated set of conserved Noether
charges Q1. A NTS is, for a �xed charge Q, the �eld con�guration with the lowest energy and is stable
as long as the global symmetry remains unbroken [1]. And here is the main di�erence with a TS: in a
NTS, the conserved charge associated with the global symmetry is the responsible of the stability of
the solution. On the other hand, in a TS, that role is played by a topological conserved quantity or
winding number.

After such a long prologue, let us �nally tackle the �rst big question: what is a Q-ball? A Q-ball is
a spherically symmetric2 NTS composed by scalar �elds in a theory with a continuous unbroken global
symmetry. These objects behave in many ways like a lump of matter with �xed Q charge density.
The seminal paper on this subject was published by Sidney Coleman in 1985 [2], although there were
a few previous works which found similar solutions but did not address some fundamental issues like
stability nor did such a comprehensive study. Since then, Q-balls have been studied in di�erent Beyond
Standard Model (BSM) theories. Their main phenomenological features are that they could have been
produced in the early Universe and they could even be Dark Matter (DM) candidates.

2 Simplest Q-balls

As usually happens in theoretical Physics, Q-balls were discovered in a very simple theory. Coleman
studied comprehensively and rigorously these solutions in such theory [2], but only in the case of large
Q-balls. In this section, you will be talked through the most important parts of such work from a
practical and not so formal point of view.

2.1 Model setup

The simplest theory with Q-balls is a SO(2) symmetric theory of real scalars:

L =
2∑
i=1

1

2
∂µφi∂

µφi − U (φ) , (1)

where:

φ =

√√√√ 2∑
i=1

φ2
i , (2)

and U (φ) is a general scalar potential, which might even be non-renormalisable. We must ask the
global minimum of the potential to be at φ = 0 to keep the global symmetry unbroken. By convention,
we will choose U (0) = 0. The spectrum consists of scalar bosons with Q = ±1 and mass µ, de�ned
like:

µ2 =
d2U

dφ2
(0) =

2U (φ)

φ2

∣∣∣∣∣
φ=0

. (3)

1Can you see now the origin of the Q in Q-ball?
2Now the name is completely justi�ed. For the sake of rigour, I will show later that these objects must be spherical.
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The conserved currents and charges of this theory are:

jµ = φ1∂µφ2 − φ2∂µφ1 (4)

Q =

∫
j0 d

3x. (5)

From now on, we will do mostly classical �eld theory3.

2.2 Introducing the Q-ball

If the minimum of U/φ2 is at some point φ0 6= 0, the spectrum changes and new objects with arbitrary
charge Q appear. These will be stable if the following condition is satis�ed:

min

[
2U (φ)

φ2

]
=

2U (φ0)

φ2
0

= ω2
0 < µ2, (6)

where we use such equation to de�ne the frequency ω0 for future convenience. These new states in
the spectrum are, for large enough Q, non-dissipative solutions of the classical �eld equations that are
absolute minima of the energy for �xed Q. For a suitable choice of the reference frame, those solutions
are:

φ1 =φ (r) cos (ωt) , (7)

φ2 =φ (r) sin (ωt) , (8)

where φ (r) is a monotonically decreasing function of the distance from the origin, going to zero at
in�nity. ω is a real constant which must obey the inequalities:

ω2
0 < ω2 < µ2. (9)

We have found the Q-balls. The scalar �eld inside a Q-ball has a non-vanishing absolute value but it
rotates steadily with frequency ω in its internal space.

As the charge Q goes to in�nity, the frequency ω approaches ω0. In such limit, the spatial distribu-
tion of the �eld resembles a smoothed-out step function. Let's call R to the radius where the �eld goes
from φ0 inside to 0 outside. Both regions are connected by a smooth transition zone with thickness
1/µ. A sketch of the �eld pro�le for a Q-ball is showed in Fig. 1.

2.3 Building Q-balls

Let us assume the existence of a solution like the one discussed before and minimize the energy at �xed
Q. The �eld will be given by Eq. 8 and we will start with the roughest and crudest approximation for
the spatial component. We will assume that the �eld is a step function, with some constant non-zero
value around the origin of coordinates:

φ (~r) =

{
φ if ~r ∈ V
0 if ~r /∈ V

, (10)

where V is a simply connected region around the origin with volume V . Monotonically decreasing and
approaching zero at in�nity, as we wanted, it is for sure. Indeed, it is a good approximation for a very
large Q-ball [2]. We will study the transition zone, dropping the assumption of a step function, later
on.

3No, Q-ball does not mean Quantum ball.
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Figure 1: Sketch of the �eld pro�le of a large Q-ball. In dashed blue lines, we plot the step function
approximation for such pro�le.

The energy of this �eld con�guration is simply:

E =

∫ [ 2∑
i=1

1

2
φ̇2
i +

2∑
i=1

1

2
(∇φi)2 + U (φ)

]
d3x

=
1

2
ω2φ2V + U V, (11)

and the charge:
Q = ωφ2V. (12)

Therefore, the energy can be rewritten trading ω for Q:

E =
1

2

Q2

φ2V
+ U V. (13)

For a �xed Q and as a function of V , the energy is minimum for:

V =
Q√
2φ2U

. (14)

Replacing:

E = Q

√
2U

φ2
. (15)

Minimizing this as a function of φ, we �nd the de�nition of φ = φ0, where φ0 was de�ned in Eq. 6.
This is a good moment to stress the meaning of the condition in Eq. 6. If ω2

0 > µ2, it is energetically
favourable to have a bunch of free scalar bosons with total charge Q and then the Q-ball does not
exist. When the condition is ful�lled, the Q-ball solution is not only allowed but its decay via emission
of charged scalars (with charge ±1 and mass µ) is completely forbidden. Why? Because the energy

per unit of charge E
Q =

√
2U0

φ20
is forced to be smaller than the one of a scalar, µ.

Another important consequence is that the value of the �eld inside the Q-ball is determined by the
potential. We did not ask φ to be independent of the charge, so it is remarkable that turned out to be
so! This implies that the energy (see Eq. 15) and the volume (see Eq. 14) are proportional to the
charge. In other words, the energy and charge density inside the Q-ball are independent of the total
charge. Later, we will see that the frequency ω has a similar property. Therefore, we are entitled to
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think these solutions as a lump of Q-matter, with constant local properties. But we have to stress the
validity of these claims only for large enough Q-balls.

But, is this a Q-ball or just a Q-thing with unde�ned shape? Because we never speci�ed the shape
of V... To elucidate this question, we have to consider the contribution to the energy from the transition
zone at the surface of V. This contribution is expected to be positive and proportional to the surface
area. Hence, in order to minimize the energy, we have to pick the shape with minimal surface area for
a given volume, i. e. the sphere. In conclusion, yes, V is a sphere and we really have Q-balls.

The minimization of the surface also forbids the decay via quantum tunneling (the appearance of a
vacuum bubble inside the Q-ball). Quantum tunneling preserves Q and E and the previous arguments
say that the only state with the energy and charge of a Q-ball is a spherical one, not one with a cavity
inside.

Let us make a small detour to think a little more about the name of these objects. A bunch
of ordinary matter is stable if the number of particles in it is so. And if that bunch has spherical
symmetry, I would say that we have a ball of particles or a particle ball. In the case of a Q-ball, the
radius of the ball is constant if the charge is preserved. So the charge Q plays the role of the number
of particles in ordinary matter. The name �Q-ball� is more than well justi�ed.

2.4 Newton's lessons

Replacing the Q-ball solution (Eq. 8) in the EOM of the �eld, we obtain:

d2φ

dr2
= −2

r

dφ

dr
− ω2φ+ U ′ (φ) . (16)

Through a analogy with Newton mechanics, it is possible to show that a Q-ball is a solution to the
EOMs. You can �nd the details in the original paper [2].

Here, we will summarise what such analogy teaches us about the Q-ball. First, it justi�es the
condition over ω in Eq. 9. Second, it tells us that for very large Q-balls, i.e. φ (r) ∼= φ0 even far from
the origin, ω → ω+

0 . Indeed, it is useful to take ω ∼= ω0.
Third, it allows to characterize the surface of the Q-ball. If we de�ne sort of an �e�ective potential�

Û as:

Û = U − ω2
0

2
φ2, (17)

we �nd the relation:

R− r =

∫ φ(r)

φ̄

1√
2Û

dφ, (18)

where R is de�ned such that φ (R) = φ̄. And φ̄ can be chosen anywhere in the fuzzy transition region.
It is convenient to choose it such that: ∫

φ2d3x =
4π

3
R3φ2

0. (19)

It can be shown that such choice gives a φ̄ independent of R for large R [2]. Now we can compute the
charge, the volume energy and the surface energy of the Q-ball as a function of R and using ω ∼= ω0:

Q =
4π

3
R3φ2

0ω0, (20)

Evol =

∫
ω2

0φ
2d3x =

4π

3
R3φ2

0ω
2
0 =

8π

3
R3U (φ0) , (21)
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and the surface energy:

Esurf =

∫ [
1

2

(
dφ

dr

)2

+ Û

]
d3x (22)

=4πR2

∫ [
1

2

(
dφ

dr

)2

+ Û

]
dr (23)

=4πR2

∫ φ0

0

√
2Ûdφ. (24)

And the integral of the last line is the surface tension coe�cient. Finally, it is worth noting too that
�nding the Q-ball solution for a �xed ω is identical to the problem of �nding a bounce solution for
tunneling in 3 Euclidean dimensions with the potential Û .

2.5 Existence and stability of Q-balls

Coleman proves that Q-balls exist and are absolutely stable through a lemma and a theorem. What
do we learn from them? We can extract two useful de�nitions.

Q-ball type set of initial-value data

A set of initial-value data is of Q-ball type if:

• φ1 = φ (r) ∧ φ2 = 0 ∧ φ̇1 = 0 ∧ φ̇2 = ωφ (r) ,

• ω is a constant and,

• φ (r) is a positive function monotonically decreasing to zero as r goes to ∞.

Acceptable potential

A potential will be called "acceptable", i. e. that gives rise to Q-balls, if:

• U (φ) > 0

• U (φ) = 0 if and only if φ = 0.

• U is twice continuously di�erentiable in all its domain.

• U ′ (0) = 0 and U ′′ (0) = µ2 > 0. So far, we are just asking the global symmetry to be unbroken
and the scalars to be massive.

• The minimum of U/φ2 is attained at some φ0 6= 0. This is just the old condition in Eq. 6 written

in words. It means that U must, somewhere, dip below µ2

2 φ
2.

• There must exist three positive numbers a, b and c, with c > 2, such that:

µ2

2
φ2 − U 6 min{a, bφc}, (25)

which means that U should not dip below µ2

2 φ
2 too far.

For the sake of completeness, let us state the theorem:
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If U is an acceptable interaction, there exists Qmin 6 0, such that for any Q > Qmin,
there is initial-value data of Q-ball type that minimizes the energy for that value of Q.
Furthermore, this is the initial-value data for a Q-ball solution of the EOM (Eq. 16).

It is worth stressing that Coleman does not give any formula to compute Qmin, he just proves its
existence. But the proof was done always assuming a large Q-ball. 12 years later, a much more careful
study of small Q-balls performed by Kusenko found out that there is no classical lower bound for the
charge of a Q-ball [3]. Qmin is just a mirage produced by Coleman's techniques.

2.6 A digression on the potential

So far, we have worked in a very potential independent way, just making assumptions on how it should
behave and on their global and local minima. Let us try to characterize it a bit better.

At some moment, it was pointed that it could be non-renormalizable. Indeed, the only renormal-
izable potential allowed for the theory in Eq. 1 is:

U (φ) =
µ2

2
φ2 + λφ4, (26)

which can not ful�l the condition in Eq. 6 and then does not give rise to Q-ball solutions.
Is this a problem? No. First, because U can be an e�ective potential and the di�erence would be

only noticeable when computing loop induced corrections, which will be out of this discussion. However,
it should be mentioned that it was claimed that quantum corrections can stabilise a classically unstable
Q-ball [4]. Second, because just a slight re�nement of the theory would allow a renormalizable potential
able to produce Q-balls, like changing SO(2) for SO(3) and putting φ in the adjoint. And we will do
this a bit later.

Most phenomenological applications of Q-balls are related to their possible production in the early
universe. This is because they appear whenever we are near or at a �rst-order symmetry-breaking
phase transition. We can see an example in Fig. 2, where the point φ+ is the candidate to satisfy the
condition Eq. 6. If U+ is low enough, such condition will be satis�ed and Q-balls will appear. When
the parameters are deformed in such a way that the transition happens, i. e. U+ goes below 0 and φ+

is the new minimum, the Q-ball becomes adiabatically the new asymmetric vacuum (ω0 → 0).

2.7 Exciting Q-balls

Let us �nd those small oscilations of Q-balls whose frequencies go to zero as R → ∞. There are two
kinds of them.

2.7.1 Bulk sound waves

Pretend to be in the center of a Q-ball and send R to in�nity. Now, you are inside an in�nite volume
�lled with Q-matter. There is a zero mode which consists in doing in�nitesimal Q-rotations. This
turns out to be the zero wave-vector limit of a sound wave which has a frequency proportional to |~k|,
for small wave-vector ~k [2]. The proportionality constant is the sound speed inside the Q-ball, vS :

ω2
Bulk =

(
k0
)2

= v2
S

∣∣∣~k∣∣∣2 . (27)

For a Q-ball of radius R, the wave vector will be of order 1
R , so the energy of these sound waves will

be k0 ∼ 1
R .
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Figure 2: A potential near a phase transition. The local minimum at φ+ is an excellent candidate to
give rise to a Q-ball. Plot extracted from [2].

It is possible to compute the sound speed of such wave through 2 methods: solving the EOM in
a small perturbations limit or using classical relativistic �uid dynamics and taking advantage of the
local conservation of energy, momentum and Q [2]. Either way, the result is:

v2
S =

U ′′ (φ0)− ω2
0

U ′′ (φ0) + 3ω2
0

. (28)

Through the �uid dynamics way, we also learn that the local energy and pressure density in the
Q-matter are4 [2]:

e =
ω2

2
φ2 + U =

1

2
φU ′ + U, (29)

p =
ω2

2
φ2 − U =

1

2
φU ′ − U. (30)

The pressure density tells us that in the ground state, φ0 with ω0, the pressure is zero (replace the
de�nition of ω0 given in Eq. 6). This means that the ground state does not want to contract nor
expand.

2.7.2 Surface waves

What happens if we stand at the surface of a Q-ball? In that case, the R → ∞ limit is a half-space
�lled with Q-matter, separated from the vacuum by a �at boundary. The most essential zero-mode
one can think of consists of translations of the surface normal to itself.

One can compute the dispersion relation for these surface waves through �uid dynamics techniques
and the result is: (

k0
)2

=
α

e0

∣∣∣~k⊥∣∣∣3 , (31)

where α is the surface tension coe�cient found in Eq. 24:

α =

∫ φ0

0

√
2Ûdφ =

∫ φ0

0

√
2U − ω2

0φ
2dφ, (32)

4These equalities are valid assuming a Q-ball �eld con�guration like the one in Eq. 8.
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e0 is the energy density of Eq. 29 evaluated in the ground state and ~k⊥ is the projection of the wave
vector on the surface of the Q-ball.

The previous result is valid for a Q-ball of in�nite radius. For a �nite radius, the waves would take
the shape of spherical harmonics Ylm (θ, ϕ) and the dispersion equation would be:(

k0
)2

=
α

e0R3
l (l + 2) (l − 1) , (33)

which makes clear that the energy of these waves is expected to be k0 ∼ 1
R3/2 . What does this mean?

It means that for a large Q-ball, the surface waves have much smaller typical energies than the bulk
waves.

3 Non-abelian Q-balls

Shortly after the discovery of Q-balls, Coleman and his collaborators extended the study to the case
with a non-abelian global symmetry [5]. They studied models with only scalar �elds and the chosen
global symmetry groups were SU(3) and SO(3).

3.1 General setup of the models

In the SU(3) case, the �elds transform in the adjoint representation of the group (8) and therefore,
they can be arranged in a 3x3 traceless hermitian matrix, φ, and the Lagrangian density is:

L = Tr

[
1

2
∂µφ∂

µφ− µ2

2
φ2 − g

3!
φ3 − λ

4!
φ4

]
. (34)

In order to have the global minimum of the potential at φ = 0, the coe�cients must satisfy [5]:

µ2 > 0, λ > 0, 9λµ2 > g2. (35)

The model with SO(3) symmetry has scalar �elds in the spin-2 representation (5). Hence, it can
be de�ned with the same Lagrangian of Eq. 34 with the restriction that all the �elds must be real.

The 8 or 3 conserved charges of each model can be arranged conveniently in a traceless hermitian
matrix which can be computed as [5]:

Q = i

∫ [
φ̇, φ

]
d3x. (36)

In SU(3), every charge matrix is unitarily equivalent to a diagonal matrix with two eigenvalues [5]:

QSU(3) ∼ diag [q1, q2,− (q1 + q2)] . (37)

Meanwhile, in the SO(3) case the charge matrix is always equivalent to [5]:

QSO(3) ∼ diag [q,−q, 0] . (38)

3.2 When a Q-ball is not a ball-Q

The Q-ball solutions in these models are qualitatively equal to those found in the abelian model [5].
For both considered symmetry groups, Q-balls appear as long as:

g2 > λµ2. (39)
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This is the �rst huge di�erence with the abelian case. Here, Q-balls appear already with a renormal-
izable potential. The reason is that in the abelian model, the symmetry forbids a cubic interaction.
Additionally, every Q-ball of the SO(3) model is also a Q-ball of the SU(3) model, but the inverse is
not valid5.

Q-balls are constructed in the same way that in the abelian case. The �eld and its time derivative
are non-zero only inside a spherical volume V and there, the �eld is in steady rotation in the internal
space. So, the general form for the �eld is:

φ (x, t) = eiΩtφ (x, 0) e−iΩt, (40)

where Ω is a traceless hermitian 3x3 frequency matrix.
A very di�erent feature of the non-abelian models is that Q-balls may decay. In particular, a bigger

richness of solutions in the SU(3) model is expected due to the higher amount of charges. It turns out
that, in the SU(3) model, only those Q-balls with one vanishing eigenvalue seem to be stable. This
was proved with energy arguments without following a continuous path from the initial to the �nal
state and neglecting surface energy [5]. Therefore, it is possible that those Q-balls are stable under
small deformations and that small enough Q-balls are stabilized by their surface energy.

Let us go a bit further. Those SU(3) Q-balls with a vanishing charge eigenvalue (either q1 or q2) are,
then, unitarily equivalent to a SO(3) Q-ball6. So, another way of stating the stability condition is that
only those SU(3) Q-balls which are unitarily equivalent to a SO(3) Q-ball are stable. All the others are
allowed to decay to two smaller Q-balls, each one of them unitarily equivalent to a SO(3) solution. This
decay, at least for large Q-balls, is energetically favoured. This ��ssion� process was addressed with
bigger detail in a later work [6] which also found that is in general energetically favourable. A special
method to �nd the �minimal� Q-balls which have one vanishing charge eigenvalue was developed in the
original paper [5].

Finally, what happens to the excitations of the Q-balls? Surface-wave spectrum is always the same
regardless the global symmetry group of the theory because the in�nite wavelength limit of a surface
wave is an in�nitesimal translation of the Q-ball normal to its surface, which has nothing to do with
the internal space of �elds. On the other hand, the spectrum of acoustic waves might be richer, but is
not in the two models here studied. Again, there is a method to determine whether such spectrum is
richer or not that can be found in the original paper [5].

4 Small, thick-walled and composite Q-balls

So far, we have used constantly the thin-wall approximation for Q-balls and worked mainly with big
balls and huge charges. In 1997, Kusenko developed the right formalism required to work with small
and thick-walled Q-balls [3]. It is useful to visualise the di�erences between the two limiting cases from
the plot of Û , as can seen in Fig. 3. As we pointed out before, Kusenko found that there is no classical
lower limit on the charge. However, for reasons of quantum stability7, Q must be an integer and then
Q > 1 [3].

Additionally, it was showed that these small Q-balls are stable with respect to small perturbations
and classically stable. On the other hand, quantum corrections are small, and therefore the semiclassical
treatment is suitable only for Q2 � 1. For Q ∼ 1, the quantum corrections to the mass of the soliton
can be signi�cant and then the stability of these solutions is not clear.

5If you do not see quickly the reason for this, think about it from a group theory point of view. Or look again at the
charge matrices of the previous subsection.

6Two diagonal matrices with the same elements in the diagonal but in di�erent order are unitarily equivalent. This
is easy to prove, at least for 3x3 matrices, using Specht's theorem.

7Kusenko does not give further detail about this in his paper. The lecturer's guess is that is because the �eld quanta
has charge ±1, so you can not add non-integer amounts of charge to the Q-ball.
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Figure 3: Modi�ed potential Û for the two limiting cases of small and big Q. Plot extracted from [3].

It is usually assumed that the scalar �elds these solitons are made of are elementary, but the
case where the bosons are composite scalars has also been considered8 [7, 8]. More speci�cally, the
bosons could be the Nambu-Goldstone bosons (NGBs) of a spontaneously broken global symmetry in a
strongly interacting theory. In those cases, the dynamics of such bosons is described with the Coleman-
Callan-Wess-Zumino (CCWZ) formalism [9, 10] and the best known case is the chiral lagrangian which
describes the mesons in QCD. Indeed, the �rst study in this topic looked for Q-balls made of mesons
in the strangeness conserving limit. In such case, the candidate mesons for shaping up the Q-ball are
the kaons and hence, the authors decided to name that kind of Q-ball as K-ball.

However, a problem was quickly found: the leading order in derivatives CCWZ lagrangian does not
allow the existence of Q-balls9 [7, 8]. There are, at least, two ways out of this problem. The �rst one
was used to show the possible existence of K-balls and it is simply adding to the CCWZ lagrangian
the next-to-leading order terms. With these terms and some mild assumptions on the values of their
coe�cients, K-balls are allowed [7]. Do they exist in nature? That question could not be answered at
that time because there was no experimental measurement of the next-to-leading order term coe�cients
and newer papers addressing that question have not been found [7]. It is worth mentioning that Isospin
balls have also been studied [11].

Another way out is considering a conceptually rather di�erent setup where the strongly interacting
sector is a New Physics (NP) hidden sector at a scale of the TeV or above and the connection with the
SM allows the presence of Q-balls. This approach was considered by Bishara et al [8] nearly 30 years
later than the previous one . Let us be more precise about their model. The NP sector features the
spontaneous breaking of a non-abelian global symmetry which is additionally explicitly broken, so the
Nambu-Goldstone bosons (NGBs) turn out to be massive pseudo-Nambu-Goldstone bosons (pNGBs).
Those pNGBs carry a global conserved U(1) charge. The NP sector communicates with the SM through
a Higgs-portal interaction. Given the assumptions on the scale of the NP sector, the SM Higgs boson
is lighter than the pNGBS and through its interaction �assists� in the formation of the Q-balls [8].

Analytical and numerical results show that in the described model there are long lived Q-balls with
Q ∼ 10 − 104 and they are of the thick-wall type [8]. It is even more remarkable that the Q-balls
are composed of both the charged (under the global U(1)) pNGBs and the Higgs boson, stressing
the importance of the latter in their existence. When the strongly interacting sector has quarks, the

8I am grateful to Fady Bishara for having read and checked and earlier version of this section, pointed out the reference
[7] and clari�ed several doubts about Q-balls.

9The general proof of this general result can be found in an appendix of [8]
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solutions are largely independent from the number of quarks. It is expected that the lighter the Higgs
is with respect to the pNGBs, the larger the Q-balls are [8].

Before wrapping up this section, two general remarks about the in�uence of the strong dynamics
on the Q-balls properties are in order. First, the underlying strong dynamics plays a small role in the
analysis. Its main in�uence is that, if the pNGBs are composed of fermions, Fermi repulsion will make
the Q-ball bigger and more weakly bound. Second, if the U(1) global symmetry has a small explicit
breaking, the Q-balls will not be absolutely stable, but they might be very long-lived [8].

5 Meeting the fermions (or the evaporation of a Q-ball)

The e�ect of an interaction with massless chiral fermions, i.e. purely SM-like neutrinos, on the prop-
erties of a Q-ball was studied in an early paper by Coleman and collaborators [12]. They used the
simplest possible model:

L = ∂µφ
∗∂µφ− U (|φ|) + iψ†/∂ψ − iyφψ†σ2ψ

∗ + h.c., (41)

where ψ is the neutrino �eld, a Weyl spinor. The fermion has lepton number L = 1 and the scalar has
L = 2. Only massless chiral fermions will be considered and given their similarity with the massless
neutrinos of the SM, they will be usually called neutrinos throughout this text.

The interaction with the neutrinos makes the L-ball unstable. But there are some subtleties,
because in the leading semiclassical approximation, the L-ball turns out to be stable, although it
would not be so if the neutrinos were scalar bosons. What happens is that the exclusion principle
and the consequent Fermi pressure prevents the formation of pairs inside the L-ball. Hence, neutrinos
can only be produced at the surface of the L-ball and this �evaporates� [12]. It is important that the
evaporation process is exclusive of the decay to fermions. If the L-ball decayed to scalar bosons, they
could be produced anywhere in the L-ball.

It is possible to derive the following upper bound for the neutrino production rate per unit of area:

dN

dtdA
6

ω3
0

192π2
, (42)

where N is the number of neutrinos and A, the area. Using that the lepton number density inside the
L-ball10 is 4ω0φ

2
0 and each neutrino pair has lepton number 2~11, the previous bound can be turned

into a bound for the contraction speed of the L-ball radius R:∣∣∣∣dRdt
∣∣∣∣ 6 ~ω2

0

384π2φ2
0

, (43)

which is a non-trivial bound because in the semiclassical limit, i. e. ~� 1, this speed is far below the
causality bound, the speed of light [12].

The exact neutrino production rate could not be computed analytically even in the thin-wall ap-
proximation, but it was checked that it vanishes when the Yukawa coupling goes to 0, as it should.
That limit can be computed analytically in an universal case, not relying on any assumption about
the properties of the L-ball. The result is [12]:

dN

dtdA
∼= 3π

y φ0

ω0

ω3
0

192π2
+O

(
y2
)
. (44)

10Use Eq. 21 where now the charge is the lepton number. The factor of 4 comes from two sides: �rst, there is a 2
because the scalar �eld has lepton number 2, and there is another 2 coming from the normalization factor 1/

√
2 of the

complex scalar �eld with respect to the real scalar.
11Only for this computation, we are purposefully keeping ~ 6= 1 while c = 1. To see that the lepton number of the pair

carries a power of ~, analyse the dimension of the conserved charge of the fermion and �nd that is the same that for ~,
energy times longitude.
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6 Gauging Q-balls

What happens if we take the minimal setup for Q-balls and promote the U(1) symmetry to the status
of gauge symmetry? This issue was addressed not long after Q-ball's discovery [13]. And the answer
is that Q-balls also exist but their properties change [13]. To start with, inside the Q-ball, given the
non-zero value of the scalar �eld, the gauge symmetry is spontaneously broken and the gauge �eld has
mass mV ∼ eφ0.

In the limit of weak gauge coupling, the Q-ball is very large compared to the penetration length
of the gauge �eld and the charge density is concentrated on the surface. What does this mean? It
means that if the Q-ball is in an external magnetic �eld12, the photon will not penetrate it and the
magnetic �eld inside the Q-ball will vanish, i. e. it behaves like a perfect diamagnetic material.
This is the Meissner e�ect, the fundamental property of a superconductor13. Therefore, the Q-ball
interior becomes superconducting [13]. The localization of the charge density on the surface is a direct
consequence of superconductivity14 [14]. Even when the gauged Q-ball is not superconducting, there
is a slight concentration of charge near the surface, contrastingly to the global case where the charge
density is constant, as can be seen in Fig. 4 and 5.

Figure 4: Plot of the scalar �eld f (r) and the
gauge �eld g (r) = ω − eA0 as a function of
the distance to the center of the Q-ball, r. In
solid lines, a gauged Q-ball with e2 = 0.01 and
Q = 11119 and in dashed lines, a global Q-ball
(e = 0) with Q = 10941. Plot extracted from
[13].

Figure 5: Charge density ρ (r) as a function of
the radial coordinate for a gauged Q-ball, in
solid lines, and a global Q-ball, in dashed lines.
In solid lines, a gauged Q-ball with e2 = 0.01
and Q = 11119 and in dashed lines, a global
Q-ball (e = 0) with Q = 10941. Plot extracted
from [13].

As you might have expected, the gauge interaction also a�ects the conditions of existence and
stability of the Q-ball. For small enough values of the charge Q and the gauge coupling e, the �electro-
static� energy of the Q-ball should be smaller than the rest of energies, the situation resembles to the
global symmetry case and the Q-ball is expected to be stable. On the other hand, if e is large enough,
there are no stable Q-balls. The reason is that the Coulomb repulsion would be stronger than all the
other forces (scalar self interactions), preventing the accumulation of charged matter [13].

And for any �xed value of e, the same happens if Q is too large: the Coulomb repulsion15 would also

12This is an abuse of terminology. Since now and for the following paragraphs, I will borrow all the terminology from
the electromagnetism that we all know, such as magnetic �eld, diamagnetism, photon and superconductor, even though
the gauged U(1) interaction in this theory might be a completely di�erent and new interaction.

13Against the most naive belief, the Meissner e�ect is the fundamental property of a superconductor and no the
vanishing resistivity.

14I am grateful to my friend Yasuo Oda for a very useful discussion on superconductivity which was fundamental for
the writing of this paragraph.

15Which, remember, grows with the square of Q.

13



be too large and then the energy cost prevents the addition of charge to the Q-ball. In that situation,
it will be energetically convenient to put the additional charge in the form of free-particles at in�nity.
So, there is a Qmax. The presence of a maximum charge is a stark di�erence with the global case [13].
Both the existence of Qmax and its dependence on e can be seen in the numerical results of Fig. 6.

Figure 6: Plot of E/ (µQ) as a function of Q for a Q-ball with di�erent values of the gauge coupling
constant e, where µ is the mass of the free scalar in the theory. If E/ (µQ) > 1, there is no Q-ball
solution. Plot extracted from [13].

The same Coulomb repulsion has two more e�ects on Q-balls: a gauged Q-ball will have a higher
energy and a larger radius than a global Q-ball with the same charge (see Fig. 4). In the thin-wall
approximation, the authors �nd that the radius of a gauged Q-ball is [13]:

R =

(
3Q

4πφ
√

2U (φ)

)1/3(
1 +

e2Q2/3C2/3

45

)
, (45)

where C = 3φ2

4π
√

2U(φ)
and φ is the value of the scalar �eld inside the Q-ball. And the energy of the

same Q-ball turns out to be:

E = Q

√
2U

φ2
+

3e2Q2

20πR
. (46)

And the e�ect of the Coulomb repulsion is evident in both.
The authors of the paper on gauged Q-balls claimed the existence of a Qmin, just like Coleman

did [13]. At that time, Kusenko's result on Qmin were not known. Now, it seems clear (although the
lecturer has not found any literature to support this) that Qmin > 1. And it seems feasible that, for e
large enough, Qmax < Qmin and then Q-balls do not exist due to Coulomb repulsion.

7 SUSY and Dark Matter, always there

7.1 A prologue: �avourful Q-balls

When Kusenko wanted to study the presence of Q-balls in supersymmetric (SUSY) extensions of the
SM, he found out that there was no knowledge about the case where you have several types of charged
scalars with di�erent charges and masses [15]. Fortunately, the generalization to this case is rather
trivial. Let us suppose a theory with N complex scalars ϕk, k = 1, ..., N , each of them with a charge
qk under a conserved U(1) global symmetry. As in the simplest case, let us assume that the scalar
potential has its global minimum for ~ϕ = 0 and that U (0) = 0.
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Following the procedure �rst developed by Coleman to �nd large Q-balls, in this model one �nds
a few di�erences. First, each scalar �eld will be rotating with constant speed in their internal space
inside the Q-ball, but their rotation speeds will be proportional to their charges [15]. More explicitly,
the scalar �elds in the Q-ball solution will be:

ϕk (x, t) = eiqkωtϕk (x) , (47)

where ω is a real constant. Second, the existence condition for Q-balls is modi�ed to [15]:

min

[
2U (~ϕ)∑N
k=1 qk|ϕk|2

]
for ~ϕ 6= ~0. (48)

If such minimum is a global minimum, the Q-ball is stable and if it is just a local minimum, the Q-ball
is metastable. It is also worth pointing out that Kusenko and collaborators established the su�cient
conditions for the existence of global Q-balls in a class of gauge theories [16], which we will not review
here because they are not particularly enlightening.

7.2 Q-balls: just another signature of SUSY

In the Minimally Supersymmetric Standard Model (MSSM) and in any other SUSY extension of the
SM, one �nds in the lagrangian terms like the followings:

L ⊃ yi,j,kHiQ̃
j
Lq̃

k
R + ỹi,j,kHiL̃

j
L l̃
k
R, (49)

where Hi is one of the 2 Higgs doublets, Q̃
j
L is a squark associated to the left handed quark doublet, q̃kR

is a squark associated to the right handed quark singlet, L̃jL is a squark associated to the left handed

lepton doublet, l̃kR is a squark associated to the right handed lepton singlet, yi,j,k and ỹi,j,k are Yukawa
couplings and j and k are generation indices. These terms will come in general from both the SUSY
superpotential and the soft-SUSY-breaking terms [15].

More importantly, the aforementioned terms are cubic interactions among scalar �elds. And the
squarks and sleptons carry baryon or lepton number and electric charge. So, under the assumption
that lepton and baryon number are pretty much conserved (at least up to some very high scale), in
these SUSY models there are both B-balls and L-balls which might also be electrically charged. Notice
that the Higgs doublets do not carry lepton nor baryon number but some of the physical states are
electrically charged. Hence, they can form part of the Q-balls too [15]. An intriguing possibility is
that a Q-ball with both non-vanishing lepton and baryon numbers would interact as a leptoquark [15].
Shortly after, non-abelian Q-balls in SUSY models were also studied [17] and the in�uence of the
abelian Q-balls on proton stability was addressed too [18].

7.3 Q-balls: just another DM candidate

Just after arguing that there were Q-balls in any SUSY extension of the SM, Kusenko and his collab-
orators studied their properties as DM candidates [19]. The �rst main concern was their production:
none of the production mechanisms known at the time (pair production at high temperature, fusion
like in nucleosynthesis and production in a phase transition) was able to generate Q-balls large enough
to survive the evaporation in massless (or very light) fermions that we already discussed [12, 19]. They
discovered that there is a production mechanism which could achieve such goal.

This mechanism uses the similarity between an in�nite size Q-ball and a coherent scalar condensate
with non-vanishing lepton or baryon numbers16. If in the early Universe, there was a condensate of

16This kind of condensate is the starting point in the already known A�eck-Dine scenario for baryogenesis.
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Figure 7: Constraints on the charge and the mass of Q-ball DM, where Q is its charge (baryon number)
andMS is a mass scale proportional to the Q-ball mass (see Eq. 128 in [20]). Plot extracted from [21].
Bounds come from demanding that the Q-ball interaction during a DM transit is capable of igniting
White Dwarfs (WDs), occurring at a rate large enough to either ignite a single observed 1.25 M�
WD in its lifetime (WD in local DM density is blue shaded) or exceed the measured Supernovas (SN)
rate in our galaxy. The corresponding constraint from gravitational heating of WDs (orange shaded)
and existing limits from terrestrial detectors (red) are also plotted [20], where TA and OA stand for
Telescope Array and Owl-Airwatch telescope.

squarks or sleptons with a large VEV along some �at direction of the potential. Due to the large VEV,
the baryon number can be strongly violated and then, the condensate acquires a non-zero baryon
number. The subsequent evolution of the Universe leads to a vacuum where the baryon number is
conserved and since then the scalar condensate is just Q-matter, what a Q-ball is made of, but without
the right spatial distribution. But this condensate, due to small perturbations, might become unstable
and it will decay to the lowest energy state: a Q-ball! (If its existence is allowed) [19].

The B-balls, i.e. a Q-ball with non-vanishing baryon number, generated through such mechanism,
in order to be stable, should have a baryon number satisfying:

B &

(
mϕ

mn

)4

& 1012, (50)

where mϕ is the typical mass of the squarks and mn ∼ 1 GeV is the mass of the lightest baryons.
Given the LHC results, we expect mϕ & 103 GeV. Let us remark that the lifetime of L-balls (with non-
vanishing lepton number) will be much shorter due to the lightness of leptons (neutrinos especially).
The authors point out that L-ball decays could distort the cosmic microwave background radiation
(CMB) [19].

In a subsequent paper, Kusenko et al [22] analysed the experimental signatures of such B-balls
in experiments such as Super-Kamiokande, Baikal Deep Underwater Neutrino Experiment and the
MACRO search. The bound at that moment (1998) was B & 1021 [22]. Some updated bounds can
be found in [20, 21]. In Fig. 7, we reproduce the plot shown in [21]. It is clear that the allowed
parameter space is well constrained.

To wrap up this topic, let us take a quick look at some very recent works. Q-ball DM could be
detected or constrained through White Dwarfs [21] or using IceCube [23]. But apparently several
astrophysical constraints could be lifted if there were baryon violating operators [24]. 2 years ago a
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group claimed to have found a new type of Q-balls in gauge mediated SUSY breaking models [25].
And just a few weeks ago, another group studied Q-balls as DM candidates in the simple Higgs-portal
dark matter model [26].
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A A soliton's story

As a conclusion to this Workshop Seminar series, I thought it would be nice to recall brie�y the history

of the concept soliton.

The concept soliton was born much before that particle physics and in a very di�erent �eld: �uid
dynamics. The �rst recorded observation and description of a soliton, then dubbed �wave of transla-
tion�, was made by the Scottish engineer John Scott Russell (9 May 1808 - 8 June 1882) in the Union
Canal in 183417. Let us read his own description of the �rst observation of such phenomenon:

I was observing the motion of a boat which was rapidly drawn along a narrow channel by

a pair of horses, when the boat suddenly stopped � not so the mass of water in the channel

which it had put in motion; it accumulated round the prow of the vessel in a state of violent

agitation, then suddenly leaving it behind, rolled forward with great velocity, assuming the

form of a large solitary elevation, a rounded, smooth and well-de�ned heap of water, which

continued its course along the channel apparently without change of form or diminution of

speed. I followed it on horseback, and overtook it still rolling on at a rate of some eight or

nine miles an hour, preserving its original �gure some thirty feet long and a foot to a foot

and a half in height. Its height gradually diminished, and after a chase of one or two miles

I lost it in the windings of the channel. Such, in the month of August 1834, was my �rst

chance interview with that singular and beautiful phenomenon which I have called the Wave

of Translation.

After his discovery, Russell spent a few years studying solitons in special water tanks. His studies were
enough to discover that these waves are stable, can travel long distances, its speed depends on their
size (the bigger, the quicker), its width depends on the depth and two other remarkable phenomena.

17All the information in this appendix was extracted from the English edition of Wikipedia.
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First, that solitons do not merge and a big one will overtake smaller ones. Second, if a wave is too big
for the depth of the water, it will split into two smaller solitons. At that time, experimental physics
was ahead of theory because notable physicists of the time like Airy and Stokes could not explain
solitons with their water wave theories. Just in 1870s Joseph Boussinesq and Lord Rayleigh provided
the �rst theoretical descriptions of solitons. With the time, solitons spread around Physics and Science
in general. Today, solitons are of interest in �ber optic physics, magnets and they may even appear in
proteins and DNA!

But solitons' discoverer is also worth of a few words. Russell was a very accomplished civil engineer
and naval architect who was also a Fellow of the Royal Society of Edinburgh and the Royal Society. He
designed some early steam carriages in 1834, revolutionised ship hulls design in 1840s by studying the
shape which would o�er the least resistance to water and in 1848 made one of the �rst experimental
observations of the Doppler e�ect, just 6 years after the publication of Christian Doppler's theory. He
wrote articles for the British Encyclopaedia and was an accomplished lecturer and speaker. But he
was very notable as a builder. He was responsible for the construction, although not the whole design,
of the SS Great Eastern, the largest (by much) ship ever built at the time of her launch in 1858. Let
me put some numbers to that ship: 211m long, surpassed in 1899; almost 19000 gross ton, surpassed
in 1901; able to transport 4000 passengers from UK to Australia non-stop, surpassed just in 1913;
two steam powered paddle wheels; one steam powered propeller and a set of sails. A ship with a very
eventful history too, whose main legacy might be the submarine telegraph cables she laid. To wrap up,
Scott Russell built the cupola for a building called Rotunda in Vienna in 1873 which was the biggest
cupola in the world for nearly a century.

B Sidney Coleman: a short biography

I �nd very hard to close this Workshop Seminar series without writing a few lines about Sidney Coleman,

the discoverer of Q-balls and one of the most in�uential theoretical physicists of the second half of the

20th century.

Sidney Richard Coleman was born in Chicago on 7 March 1937. He grew up in a tough neigh-
bourhood of Chicago and developed an early interest in the construction of the atomic bomb, which
gave him his ambition to become a physicist. Without losing time, he had already built a primitive
computer in high school18.

Coleman did his undergrad studies in the Illinois Institute of Technology and then moved to Cal-
tech, where he was taught by Feynman and Gell-Mann. The later was his PhD supervisor. After
receiving his PhD in 1962, he moved to Harvard where he stayed the rest of his career. During the fol-
lowing 3 decades, he produced several remarkable works. Among his contributions to Physics, we �nd
the Coleman-Mandula theorem, the Coleman theorem, the CCWZ formalism, the Coleman-Weinberg
potential, Q-balls, studies on the cosmological constant and tadpoles and many others.

He received the Dirac Medal, the NAS Award for Scienti�c Reviewing and the David Heineman
Prize. But his reputation among his colleagues was much higher that the amount of awards. He
was considered the �physicist's physicist� and �the Oracle�, with a huge encyclopedic knowledge and a
deep understanding of Physics. Remarkably, he is pretty much unknown out of the �eld of theoretical
particle physics.

Coleman was also a legendary teacher. His lectures at Harvard were praised by his students. And
his series of lectures at the Erice (Sicily, Italy) Summer School were put altogether in the remarkable
book �Aspects of Symmetry�. He had several well-known graduate students, like Erick Weinberg, David
Politzer, Je�rey Mandula and Anthony Zee. And there are lot of stories about him, stressing his special

18The information for this appendix was extracted from Wikipedia, the obituary published by Har-
vard (https://news.harvard.edu/gazette/story/2007/11/sidney-coleman-dies-at-70/) and the Sidneyfest webpage
(http://media.physics.harvard.edu/QFT/sidneyfest.htm)
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character, like refusing to teach at 9 A.M. saying �I can't stay up that late�. He was also a huge fan of
science �ction (he even founded a publisher), poker and hiking.

Coleman stopped teaching and working in 2003. In 2005, with him present, Harvard's Physics
Department organized a celebration of his life and work, called Sidneyfest. This meeting turned out to
be a meeting of all the brilliant theoretical physicists of the last decades. Coleman died 2 years later,
on 7 November 2007, at 70.
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