EUROPEAN PLASMA RESEARCH ACCELERATOR WITH EXCELLENCE IN APPLICATIONS

EuPRAXIA-LPA – A EuPRAXIA Construction Site Based on Laser-Driven Plasma Acceleration

HELMHOLTZ

Maria Weikum¹

On behalf of Ralph Assmann and the EuPRAXIA Collaboration

¹ Deutsches Elektronensynchrotron DESY, 22607 Hamburg, Germany maria.weikum@desy.de

EuPRAXIA FEL Pilot User Application Workshop 17th June 2019 – Rome, Italy

E<u>u</u>**PRA**

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 653782.

A Construction Site Based On LWFA

A Construction Site Based On LWFA

Outline

- Construction site overview
 - Accelerator beamlines
 - Non-X-ray applications
 - o Betatron X-ray source
 - FEL source
- Possible site location
- Conclusion and open points

Construction Site Layout

□ Based on laser-driven plasma acceleration (LWFA)

□ Three beamlines, eight user areas

□ Three types of beams: electrons, positrons, X-rays

Site Layout – Non-X-Ray Applications

Site Layout – Non-X-Ray Applications

Site Layout – Non-X-Ray Applications

Accelerator R&D

- Access to different types of beamlines with single- and multi-stage accelerators
- Suitable for diagnostics development, experiments on plasma accelerator components and techniques, studies on accelerator stability

Site Layout – X-Ray Applications

0

Ο

Site Layout – Betatron X-Ray Source

Horizon 2020

E[•]**PRA** IA

E^{*}PRA IA

Expected FEL Performance (based on simulation results, not self-consistent) (courtesy: F. Nguyen)

Electron beam energy [GeV]	5.0-5.4
Electron energy spread (slice) [%]	0.05-0.14
Electron beam charge [pC]	20-35
Electron beam emittance (slice) [mm mrad]	0.08-0.40
Beam duration [fs]	4-12
Repetition rate [Hz]	20-100
Radiation wavelength [nm]	1.4 - 1.65
Photons per pulse	8x10 ¹¹
Bandwidth (FWHM) [%]	0.273
Pulse duration [fs]	1.68

- Phased setup with energy increase from 1 to 5GeV over time
- Possible future upgrades and developments:
 - Repetition rate increase (to kHz level)
 - Improvement of FEL performance (wavelength, brilliance, etc.)
 - ➢ Ultrashort pulse generation (≤1fs)
 - Reduction in machine size

Possible Site Location

Possible Site Location

Different layouts for a possible location of the site at DESY (courtesy: P. A. Walker)

Possible Site Location

••••

- Construction site design with multiple beamlines, user areas and several types of particle & radiation beams conceptually well developed
- Many open points remain on user-related aspects to define during technical design, e.g.
 - What requirements should the user areas have?
 - What user operation modes (shift lengths, level of support, etc.) work best?

Acknowledgements

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant No 653782.

Thank you for your attention!

Any questions?

EuPRAXIA-LPA | Maria Weikum – 17th June 2019, Rome (Italy)

EuPRAXIA's Main Technical Challenges

Note: This list is merely designed to give an overview, it is not comprehensive and does not cover any details of the proposed solutions.

Technical Challenge	Proposed Solution
Beam energy spread reduction	Optimisation of injection mechanisms Development of novel injection mechanisms External injection from RF accelerator Development and optimisation of dechirping techniques
Beam emittance reduction	Advanced beam control via transfer lines
Laser – e-beam synchronisation	Development of novel synchronisation schemes
Shot-to-shot stability	Advanced diagnostics Feedback & control system Tight control over laser tolerances
Operability & maintainability	Advanced diagnostics Feedback & control system
Increase in repetition rate	Development of heat control mechanisms in laser systems Differential pumping for vacuum systems
Accelerator staging	Advanced beam control via transfer lines Use of active plasma lenses for compact, strong focusing
Plasma-based FEL operation	Ongoing, large-scale "prototyping" activities (e.g. LUX, COXINEL) Tight control of electron beam parameters and dynamics Development of novel FEL modes (e.g. decompression chicane, TGU)

Management Structure

Participating Institutions

ASSOCIATED PARTNERS December 2018

Shanghai Jiao Tong University, China Tsinghua University Beijing, China

International

International

Laboratory, USA

ELI – Extreme Light Infrastructure – Beamlines,

PhLAM – Laboratoire de Physique des Lasers

Helmholtz-Institut Jena, Germany

Wigner Fizikai Kutatóközpont, Hungary

Kansai Photon Science Institute/Japan

Atomic Energy Agency, Japan Osaka University, Japan

RIKEN SPring-8 Center, Japan Lunds Universitet, Sweden

Atomes et Molécules, Université de Lille 1, France

Helmholtz-Zentrum Dresden-Rossendorf, Germany

Ludwig-Maximilians-Universität München, Germany

CERN – European Organization for Nuclear Research,

15 LBNL – Lawrence Berkeley National Laboratory, USA 16 UCLA – University of California Los Angeles, USA

17 KIT – Karlsruher Institut für Technologie, Germany

CASE – Center for Accelerator Science and Education at Stony Brook University and Brookhaven National

- 18 Forschungszentrum Jülich, Germany
- Hebrew University of Jerusalem, Israel
- 20 Institute of Applied Physics of the Russian Academy of Sciences, Russia
- 2) Joint Institute for High Temperatures of the Russian Academy of Sciences, Russia
- Università degli Studi di Roma "Tor Vergata", Italy
- 😕 Queen's University Belfast, UK
- 🔁 Ferdinand-Braun-Institut, Germany
- 25 University of York, UK