Towards 5PN accuracy in Non Relativistic General Relativity #### Riccardo Sturani International Institute of Physics - UFRN - Natal (Brazil) S. Foffa, P. Mastrolia, RS, C. Sturm, W. Torres Bobadilla Phys. Rev. Lett. 122 (2019), arXiv:1902.10571 S. Foffa, RS, submitted to PRD, arXiv:1907.02869 ClassGR2QA&back Berlin, November 20th 2019 # PN approximation to General Relativity Small expansion parameter v, related to metric perturbation $v^2 \sim \frac{G_N M}{r}$ Near zone, $D \sim r$ Far zone, $D \gtrsim \lambda = r/v$ Q_{ij} • conservative + dissipative Describe conservative dynamics EFT framework pioneered by W. Goldberger and I. Rothstein, PRD '06 ## PN approximation for compact binary systems | | Near | Far | | |------------|--|--|--| | World-line | $-m_{a}\int d au=m_{a}\int dt imes$ | $\int d^4x \left(Eh_{00} + \frac{1}{2}\epsilon_{ijk}L^i h_{0j,k}\right)$ | | | | $\left(\phi + A_i v^i + \sigma_{ij} v^i v^j + \ldots\right)$ | $+Q_{ij}E^{ij}\ldots)$ | | | Bulk | $\frac{1}{16\pi G_N} \int d^4x \left[R - \frac{1}{2} \left(g^{\alpha\beta} \Gamma^{\mu}_{\alpha\beta} \right)^2 \right]$ | | | | 5PN | $G_N, G_N^2, G_N^3 \checkmark $ | _ | | | | G^4 , $G^5 \times$ | ✓ Foffa& RS 1907.02869 | | | | $G^6 \checkmark$ RS et al. PRL (2019) | | | 3 / 24 5PN is the lowest order finite size effect are not forbidden effacement principle, but expected at > 5PN order ($Love_{BH}=0$)² Riccardo Sturani (IIP-UFRN) Towards 5PN in NRGR GR2QA& back - Nov 20th $^{^{1}}$ PM: Duff ('73); Westpfahl & Goller, LNC ('79); Damour PRD ('18), Cheung et al. PRL ('18), Bern et al. PRL ('19) ²See Binnington & Poisson, Damour & Nagar PRD ('09); Kol & Smolkin JHEP ('12); Pani et al. PRD ('15) # Outline Near zone 2 Far zone #### Effective potential from integration over regions Internal graviton momentum can be expanded upon the following scaling: | hard | (m, m) | quantum | × | |-----------|-------------------------|-----------|--------------| | soft | (\vec{q} , \vec{q}) | quantum | × | | potential | (v/r,1/r) | classical | ✓ | | radiation | (v/r,v/r) | classical | next section | and then integrated over the full phase space Only potential and radiation gravitons exchanged in classical processes: theory in terms of world lines selects diagrams that do not send source off-shell Potential graviton → small change in energy wrt momentum, dominate classically Ex. of classical connected diagrams Ex. of quantum diagrams Gravitational interactions do not create anti-BHs! Graviton loop are negligible in astronomy! # From relativistic scattering amplitudes to 2-body potential Equivalently, loops with massive particles contain a classical piece for $m \gg |\vec{q}|$: $$V(\vec{r}) = \int rac{d^3q}{(2\pi)^3} A(\vec{q}, m_1, m_2, \vec{v}_1, \vec{v}_2, \ldots) e^{i rac{\vec{q}\cdot\vec{r}}{\hbar}}$$ $$\supset rac{1}{m^2 - \vec{q}^2} ightarrow rac{1}{m^2} + rac{\vec{q}^2}{m^4} + \ldots$$ $$classical quantum$$ E.g.: $\frac{G_N}{q^2}, \frac{G_N^2}{|q|}, G_N^3 \log |q| \dots$ are classical contributions #### Alternative view Equivalently, loops with massive particles contain a classical piece for $m \gg \hbar |\vec{l}|$: $$V(\vec{r}) = \hbar \int \frac{d^3l}{(2\pi)^3} A(\vec{l}, m_1, m_2, \vec{v}_1, \vec{v}_2, \dots) e^{i\vec{l}\cdot\vec{r}}$$ $$\supset \frac{1}{m^2 - \hbar \vec{l}^2} \rightarrow \frac{1}{m^2} + \frac{\hbar^2 \vec{l}^2}{m^4} + \dots$$ classical quantum ## The gravity action Useful ansatz: $$\begin{split} g_{\mu\nu} &= \mathrm{e}^{2\phi/m_{Pl}} \left(\begin{array}{cc} -1 & A_{j}/m_{Pl} \\ A_{i}/m_{Pl} & \mathrm{e}^{-c_{d}\phi} \left(\delta_{ij} + \sigma_{ij}/m_{Pl} \right) - A_{i}A_{j}/m_{Pl}^{2} \right) \\ S_{pp} &= \int dt \, \mathrm{e}^{\phi/m_{Pl}} \sqrt{\left(1 - \frac{A_{i}v_{i}}{m_{Pl}} \right)^{2} + \mathrm{e}^{-c_{d}\phi/m_{Pl}} \left(v^{2} + \frac{\sigma_{ij}}{m_{Pl}} v^{i}v^{j} \right)} \\ S_{EH} &= \int d^{d}x \sqrt{-\gamma} \left\{ \frac{1}{4} \left[\left(\vec{\nabla}\sigma \right)^{2} - 2\vec{\nabla}\sigma_{ij}^{2} \right] - c_{d} \left(\vec{\nabla}\phi \right)^{2} + \right. \\ & \left. + \frac{F_{ij}^{2}}{2} + \left(\vec{\nabla} \cdot \vec{A} \right)^{2} + \dot{\sigma}^{2} + \dot{\phi}^{2} + \dot{A}^{2} + \right. \\ & \left. + \partial^{2}\phi^{2}\sigma^{k} + (\dot{\phi})^{2}\phi^{k} + \text{ other interactions } \left(\partial^{2}\phi \right) \vec{\phi}^{k} \right\} \end{split}$$ 1PN 1PN All factorizable #### Factorization theorem in the static sector #### Theorem At (2n+1)-PN order all static graphs are factorizable #### Proof. $$V \propto G^{d_M-1} m_1^{d_{m_1}} m_2^{d_{m_2}} = G_N^{d_M-1} m_1^{d_M} \left(rac{m_2}{m_1} ight)^{d_{m_2}}$$ Only world-line $m_i\phi^n$ and bulk $\phi^2\sigma^k$ vertices matter Prime diagrams must have all $n=1 \implies d_M=2m$ since all internal static vertices have even number of ϕ . Then $V \propto G^{2m-1} \subset (2m-2)$ -PN Crucial is the absence of $(\partial \phi)^2 \phi^k$ bulk terms (but $\dot{\phi}^2 \phi^k$ present) At (2n+1)-PN order no integration needed, just multiplications! # How it works in practice: 1PN 3PN $$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2} \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{4} + \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right) \times \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$ $$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$ $$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$ $$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$ - Finite- and rational-ness inherited from 4PN (non trivially!) - Schwarzschild limit OK ($m_2 \ll m_1$) - ullet Result confirmed by explicit, indepedent calculation of ~ 100 diagrams in Blümlein et al arXiv:1902.11180 - Factorization does not hold for all diagrams at *n*-PN sectors $G^{1+n-j}v^{2j}$ (0 < $j \le n$) but for $\gtrsim 50\%$ of them. $$V_{5PN\,static} = rac{G_N^5 m_1^3 m_2}{r^5} \left(rac{5}{16} m_1^2 + rac{91}{6} m_1 m_2 + rac{653}{6} m_2^2 ight)$$ #### Outline Near zone 2 Far zone # Radiation scale: Including modes with $k \sim (\omega = v/r, \omega \hat{n})$ #### 0 point $$\int d\omega \tilde{A}(\omega) = -\int dt V(t)$$ $$\int h_{ij}(\omega) T^{ij}$$ interactions among all possible modes (radiative and longitudinal) Double line represents the composite object $$S = rac{1}{2} \int d^4 x \quad \left(E h_{00} + \epsilon_{ijk} L^i h_{0j,k} + Q_{ij} E^{ij} + rac{1}{3} O_{ijk} E^{ij,k} - rac{2}{3} J_{ij} B_{ij} + \ldots ight)$$ endowed with multipoles: v is the small parameter of the multipole expansion, but $G_NM\omega$ is the expansion parameter of perturbation theory. #### Hereditary terms Wform depends on the history rather than source's state at retarded time (propagation inside the light-cone) Blanchet & Damour PRD (1988) Christodoulou PRL (1991) (asymptotic states and IR property) Blanchet & Damour PRD (1992) $$egin{split} Q_{ij}(t) &= Q_{ij}^{(0)}(t) + 2 extit{GNM} \int_0^\infty d au \ddot{Q}_{ij}(t- au) \left[\log\left(\mu au ight) + rac{11}{12} ight] \ &- rac{2}{7} \int_0^\infty d au Q_{ik}^{(3)}(t- au) Q_{kj}^{(3)}(t- au) \end{split}$$ Riccardo Sturani (IIP-UFRN) ## Hereditary terms Wform depends on the history (propagation inside the light-cone) Tail: 1pt hereditary Selfenergy hereditary Foffa & RS PRD ('13) Galley & al. PRD ('15), Damour & al. PRD ('13) Memory: hereditary instantaneous Foffa & RS 1907.02869 # Conservative-dissipative interplay Leading order power loss (i.e. quadrupole formula) from self-energy diagram: $$S_{eff2.5PN}^{Q^{2}} = \int_{-\infty}^{\infty} \frac{\mathrm{d}k_{0}}{2\pi} \int_{\mathbf{k}} \left(\underbrace{\frac{\mathrm{d}k_{0}}{Q_{ij}} \int_{Q_{kl}}} \right)$$ $$= -2\pi G_{N} \int_{-\infty}^{\infty} \frac{\mathrm{d}k_{0}}{2\pi} \int_{\mathbf{k}} \frac{Q_{ij}(k_{0})Q_{kl}(-k_{0})}{\mathbf{k}^{2} - k_{0}^{2}} \left[\underbrace{-k_{0}^{4} \delta^{ik} \delta^{jl}}_{\sigma} + \underbrace{2k_{0}^{2} \delta^{ik} k^{j} k^{l}}_{\mathbf{A}} - \underbrace{\frac{1}{2} k^{i} k^{j} k^{k} k^{l}}_{\phi} \right]$$ $$= i \frac{G_{N}}{10} \int_{-\infty}^{\infty} \frac{\mathrm{d}k_{0}}{2\pi} |k_{0}| k_{0}^{4} Q_{ij}(k_{0}) Q^{ij}(-k_{0}),$$ Diagram purely imaginary, receives contribution from the $k_0 \sim |\vec{k}|$ region #### Tail calculation Tail self-energy diagram divergent $(\mathbf{q} \to 0, \mathbf{k} \to \infty)$ $$\begin{split} S_{pole}^{tail} &= -64\pi^2 G_N^2 E \quad \int_{-\infty}^{\infty} \frac{\mathrm{d}k_0}{2\pi} \int_{\mathbf{k}\mathbf{q}} \frac{k_0^2 Q_{ij}(k_0) Q_{kl}(-k_0)}{\mathbf{q}^2 \left[(\mathbf{k} + \mathbf{q})^2 - k_0^2 \right] \left(\mathbf{k}^2 - k_0^2 \right)} \\ &\times \left[\underbrace{-k_0^4 \delta^{ik} \delta^{jl}}_{\sigma} + \underbrace{2\mathbf{k}^2 \delta^{ik} k^j k^l}_{A} - \underbrace{\frac{1}{2}k^i k^k k^j k^l}_{\phi} \right]. \end{split}$$ has the same structure as the self-energy diagram: $$S_{pole}^{tail} = -64\pi^2 G_d^2 E \int_{-\infty}^{\infty} \frac{\mathrm{d}k_0}{2\pi} (-k_0^2)^{d/2-1} \int_{\mathbf{k}} f\left(\frac{\mathbf{k}^2}{k_0^2}\right) \frac{Q_{ij}(k_0)Q_{kl}(-k_0)}{\mathbf{k}^2 - k_0^2} [\ldots]$$ $$f\left(\frac{\mathbf{k}^2}{k_0^2} \to 1\right) \simeq \frac{1}{\epsilon}, \ \frac{G_d^2}{\epsilon}(-k_0^2 - i0^+)^{\epsilon} \simeq G_N^2\left(\frac{1}{\epsilon} + \underbrace{\log(k_0^2\mu^2)}_{non-local\ tail} - \underbrace{i\pi}_{tail\ flux}\right)$$ Tail flux = flux $\times 2\pi G_N Mk_0$ Blanchet PRD '95, Goldberger & Ross PRD '10 $\bullet riangle \bullet \bullet riangle riangle \bullet \bullet riangle riangle$ #### Action for all non-local simple tails From the flux formula: $$F = \frac{1}{5} \overset{\cdots}{Q}_{ij}^2 + \frac{1}{189} \overset{\cdots}{O}_{ijk}^2 + \frac{16}{45} \overset{\cdots}{J}_{ij} + \dots$$ one can then fix the tail cotribution to the flux and the non-local contribution to the self-energy $$S_{log}^{tail} = -G_N^2 E \int_{-\infty}^{\infty} \frac{\mathrm{d}k_0}{2\pi} \log\left(\frac{k_0^2}{\mu^2}\right) \sum_{n \geq 2} k_0^{2(n+1)} c_{(I,J)}^n (I,J)^{\alpha_1 \dots \alpha_n} (k_0) (I,J)_{\alpha_1 \dots \alpha_n} (-k_0)$$ $$= G_N^2 E \int_{-\infty}^{\infty} \mathrm{d}t \sum_{n \geq 2} c_{(I,J)}^n (I,J)^{(n+1)\alpha_1 \dots \alpha_n} (t) \int_{-\infty}^{\infty} \mathrm{d}\tau \frac{1}{|\tau|} (I,J)_{\alpha_1 \dots \alpha_n}^{(n+1)} (t+\tau),$$ with $$c_I^{(n)} = \frac{(n+1)(n+2)}{n(n-1)n!(2n+1)!!},$$ $$c_J^{(n)} = \frac{4n(n+2)}{(n-1)(n+1)!(2n+1)!!}.$$ as suggested in Damour, Jaranowski, Schäfer PRD '15 # Memory integral $$S^{memory} = -64\pi G_N \int \frac{k_0}{2\pi} \frac{q_0}{2\pi} Q_{ij} Q_{kl} Q_{mn} \int_{\mathbf{kq}} \frac{f_{ijklmn}(\mathbf{k}, \mathbf{q}, k_0, q_0)}{(\mathbf{q}^2 - q_0^2) ((\mathbf{k} + \mathbf{q})^2 - (k_0 + q_0)^2) (\mathbf{k}^2 - k_0^2)}$$ However divergent 2-loop master integral cancel among different polarizations, leaving a finite, local contribution to the self-energy ## Far zone self energy results at 5PN with finite terms Real part \rightarrow conservative dynamics (to be added to near zone results, starting 4PN order) Imaginary part matches into flux formula $F \propto \overset{\dots}{Q}_{ij}^2 + \dots$ Divergent graphs regularized in dim. reg.: divergence (and coeff. of logarithmic term) linked to imaginary part $$\begin{split} S_{5PN\;tail} &= G_N^2 M \int \frac{dk_0}{2\pi} \left[-\frac{1}{5} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi + \frac{41}{30} \right) |Q_{ij}|^2 \right. \\ &\left. -\frac{1}{189} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi + \frac{163}{35} \right) |O_{ijk}|^2 \right. \\ &\left. -\frac{16}{45} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi - \frac{127}{60} \right) |J_{ij}|^2 \right] \\ S_{5PN\;Ltail} &= \frac{8}{15} G_N^2 \int dt \stackrel{\cdots}{Q}_{il} \stackrel{\cdots}{Q}_{jl} \epsilon_{ijk} L_k \\ S_{5PN\;memory} &= G_N^2 \int dt \left[-\frac{11}{14} \stackrel{\cdots}{Q}_{il} \stackrel{\cdots}{Q}_{jl} Q_{ij} - \frac{1}{5} \stackrel{\cdots}{Q}_{il} \stackrel{\cdots}{Q}_{jl} \stackrel{\cdots}{Q}_{ij} \right] \end{split}$$ - Imaginary part of self-energy diagrams linked to n-PN flux formula (trivial) and to divergent (and log) part of real part of tails - Real part combines with near zone dynamics at (n + 4)-PN, its divergence fixed by flux formula at n-PN - Log-term is non-instantaneous (but causal) adding to the conservative dynamics - Log-term becomes instantaneous on circular orbits, contribution to E(x) agrees with 5PN log computed in Le Tiec et al. PRD (2012) and Bini & Damour PRD (2014) - Finite terms are physical and computable independently of divergences #### In-in vs. in-out - We work with Feynman propagator within the time symmetric in-out framework, which returns conservative dynamics and averaged emission. - The in-in formalism is appropriate for time-asymmetric problems, needed to compute back-reaction force and instantaneous emission, see Galley & Tiglio PRD (2009) and Galley, Leibovich, Porto and Ross (2016) #### Conclusions - 5PN is not so ugly as it seems, qualitatively different from lowest order (finite size effects not forbidden by effacement principle) - Static sector solved at 5PN (with trivial computations), method helping out for non-static sectors - Relationship established among - nPN flux - (n+1.5)PN tail flux terms - (n+4)PN conservative logs - (n+4)PN spurious poles - Uniquely defined finite terms from (non-)hereditary derived at 5PN # Spare slides ## Post-Newtonian vs. post-Minkowskian Post-Minkowskian expansion parameter is G_NM/r , vs PN expansion $$\mathcal{L} = -Mc^2 + \frac{\mu v^2}{2} + \frac{GM\mu}{r} + \frac{1}{c^2} [\ldots] + \frac{1}{c^4} [\ldots]$$ Terms known so far 3PM recently computed (!) by Z. Bern et al. PRL (2019) What's next? Amplitude program with modern methods: generalized unitarity, gravity as a double copy of gauge theory. ## Method of regions and far-near zone interplay Trouble can arise when using method of region in Feyman diagrams: • In the full theory: $$V \supset \int dt_{1,2,2'} d^4 p \, e^{ip_{\mu}(x_1^{\mu}(t_1) - x_2^{\mu}(t_2))} \frac{p^{\alpha} p^{\beta}}{p^2} \int d^4 k \frac{e^{ik^{\mu}(x_2(t_2) - x_2(t_2'))}}{(p-k)^2 k^2}$$ $$= \int dt_{1,2,2'} d^4 p e^{ip_{\mu}(x_1^{\mu}(t_1) - x_2^{\mu}(t_2))} \frac{p^{\alpha} p^{\beta}}{p^2} \Delta (p^{\mu}(x_2(t_2) - x_2(t_2')))$$ which is both IR and UV finite • Method of regions $$\int dt \, d^{3}p \, e^{i\vec{p}(\vec{x}_{1}-\vec{x}_{2})} \frac{p^{i}p^{j}}{|\mathbf{p}^{2}|} \int d^{3}k \frac{1}{|\mathbf{k}|^{2}|\mathbf{p}-\mathbf{k}|^{2}} \left(1+\ldots+\frac{\omega^{6}}{|\mathbf{k}|^{6}}+\ldots\right)$$ $$= \int dt \, d^{3}p e^{i\vec{p}\cdot\vec{x}_{12}} \frac{p^{i}p^{j}}{|\mathbf{p}|^{3}} \left\{1+\ldots+\frac{1}{|\mathbf{p}|^{6}} \left[(\vec{p}\cdot\vec{v}_{1})^{3}(\vec{p}\cdot\vec{v}_{2})^{3}+\ldots+\vec{p}\cdot\dot{\vec{a}}_{1}\vec{p}\cdot\dot{\vec{a}}_{2}\right]\right\}$$