Towards 5PN accuracy in Non Relativistic General Relativity

Riccardo Sturani

International Institute of Physics - UFRN - Natal (Brazil)

S. Foffa, P. Mastrolia, RS, C. Sturm, W. Torres Bobadilla Phys. Rev. Lett. 122 (2019), arXiv:1902.10571 S. Foffa, RS, submitted to PRD, arXiv:1907.02869

ClassGR2QA&back Berlin, November 20th 2019

PN approximation to General Relativity

Small expansion parameter v, related to metric perturbation $v^2 \sim \frac{G_N M}{r}$ Near zone, $D \sim r$ Far zone, $D \gtrsim \lambda = r/v$

Q_{ij} •

conservative + dissipative

Describe conservative dynamics

EFT framework pioneered by W. Goldberger and I. Rothstein, PRD '06

PN approximation for compact binary systems

	Near	Far	
World-line	$-m_{a}\int d au=m_{a}\int dt imes$	$\int d^4x \left(Eh_{00} + \frac{1}{2}\epsilon_{ijk}L^i h_{0j,k}\right)$	
	$\left(\phi + A_i v^i + \sigma_{ij} v^i v^j + \ldots\right)$	$+Q_{ij}E^{ij}\ldots)$	
Bulk	$\frac{1}{16\pi G_N} \int d^4x \left[R - \frac{1}{2} \left(g^{\alpha\beta} \Gamma^{\mu}_{\alpha\beta} \right)^2 \right]$		
5PN	$G_N, G_N^2, G_N^3 \checkmark $	_	
	G^4 , $G^5 \times$	✓ Foffa& RS 1907.02869	
	$G^6 \checkmark$ RS et al. PRL (2019)		

3 / 24

5PN is the lowest order finite size effect are not forbidden effacement principle, but expected at > 5PN order ($Love_{BH}=0$)²

Riccardo Sturani (IIP-UFRN) Towards 5PN in NRGR GR2QA& back - Nov 20th

 $^{^{1}}$ PM: Duff ('73); Westpfahl & Goller, LNC ('79); Damour PRD ('18), Cheung et al. PRL ('18), Bern et al. PRL ('19)

²See Binnington & Poisson, Damour & Nagar PRD ('09); Kol & Smolkin JHEP ('12); Pani et al. PRD ('15)

Outline

Near zone

2 Far zone

Effective potential from integration over regions

Internal graviton momentum can be expanded upon the following scaling:

hard	(m, m)	quantum	×
soft	(\vec{q} , \vec{q})	quantum	×
potential	(v/r,1/r)	classical	✓
radiation	(v/r,v/r)	classical	next section

and then integrated over the full phase space

Only potential and radiation gravitons exchanged in classical processes: theory in terms of world lines selects diagrams that do not send source off-shell

Potential graviton → small change in energy wrt momentum, dominate classically

Ex. of classical connected diagrams

Ex. of quantum diagrams

Gravitational interactions do not create anti-BHs!

Graviton loop are negligible in astronomy!

From relativistic scattering amplitudes to 2-body potential

Equivalently, loops with massive particles contain a classical piece for $m \gg |\vec{q}|$:

$$V(\vec{r}) = \int rac{d^3q}{(2\pi)^3} A(\vec{q}, m_1, m_2, \vec{v}_1, \vec{v}_2, \ldots) e^{irac{\vec{q}\cdot\vec{r}}{\hbar}}$$

$$\supset rac{1}{m^2 - \vec{q}^2}
ightarrow rac{1}{m^2} + rac{\vec{q}^2}{m^4} + \ldots$$

$$classical quantum$$

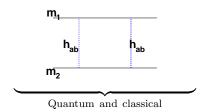
E.g.: $\frac{G_N}{q^2}, \frac{G_N^2}{|q|}, G_N^3 \log |q| \dots$ are classical contributions

Alternative view

Equivalently, loops with massive particles contain a classical piece for $m \gg \hbar |\vec{l}|$:

$$V(\vec{r}) = \hbar \int \frac{d^3l}{(2\pi)^3} A(\vec{l}, m_1, m_2, \vec{v}_1, \vec{v}_2, \dots) e^{i\vec{l}\cdot\vec{r}}$$

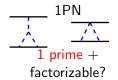
$$\supset \frac{1}{m^2 - \hbar \vec{l}^2} \rightarrow \frac{1}{m^2} + \frac{\hbar^2 \vec{l}^2}{m^4} + \dots$$
classical quantum



The gravity action

Useful ansatz:

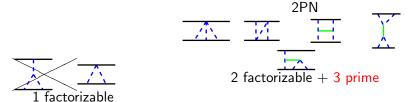
$$\begin{split} g_{\mu\nu} &= \mathrm{e}^{2\phi/m_{Pl}} \left(\begin{array}{cc} -1 & A_{j}/m_{Pl} \\ A_{i}/m_{Pl} & \mathrm{e}^{-c_{d}\phi} \left(\delta_{ij} + \sigma_{ij}/m_{Pl} \right) - A_{i}A_{j}/m_{Pl}^{2} \right) \\ S_{pp} &= \int dt \, \mathrm{e}^{\phi/m_{Pl}} \sqrt{\left(1 - \frac{A_{i}v_{i}}{m_{Pl}} \right)^{2} + \mathrm{e}^{-c_{d}\phi/m_{Pl}} \left(v^{2} + \frac{\sigma_{ij}}{m_{Pl}} v^{i}v^{j} \right)} \\ S_{EH} &= \int d^{d}x \sqrt{-\gamma} \left\{ \frac{1}{4} \left[\left(\vec{\nabla}\sigma \right)^{2} - 2\vec{\nabla}\sigma_{ij}^{2} \right] - c_{d} \left(\vec{\nabla}\phi \right)^{2} + \right. \\ & \left. + \frac{F_{ij}^{2}}{2} + \left(\vec{\nabla} \cdot \vec{A} \right)^{2} + \dot{\sigma}^{2} + \dot{\phi}^{2} + \dot{A}^{2} + \right. \\ & \left. + \partial^{2}\phi^{2}\sigma^{k} + (\dot{\phi})^{2}\phi^{k} + \text{ other interactions } \left(\partial^{2}\phi \right) \vec{\phi}^{k} \right\} \end{split}$$

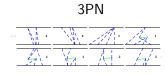


1PN

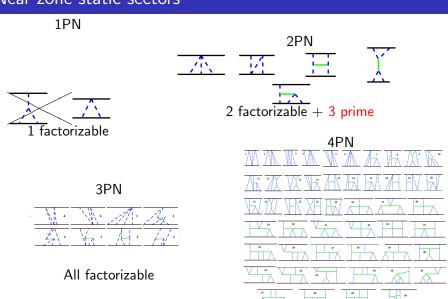


1PN





All factorizable



Factorization theorem in the static sector

Theorem

At (2n+1)-PN order all static graphs are factorizable

Proof.

$$V \propto G^{d_M-1} m_1^{d_{m_1}} m_2^{d_{m_2}} = G_N^{d_M-1} m_1^{d_M} \left(rac{m_2}{m_1}
ight)^{d_{m_2}}$$

Only world-line $m_i\phi^n$ and bulk $\phi^2\sigma^k$ vertices matter Prime diagrams must have all $n=1 \implies d_M=2m$ since all internal static vertices have even number of ϕ . Then $V \propto G^{2m-1} \subset (2m-2)$ -PN

Crucial is the absence of $(\partial \phi)^2 \phi^k$ bulk terms (but $\dot{\phi}^2 \phi^k$ present) At (2n+1)-PN order no integration needed, just multiplications!

How it works in practice:

1PN 3PN
$$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2} \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{4} + \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right) \times \left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$

$$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$

$$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$

$$\left(\begin{array}{c} 1 \\ 1 \\ 1 \\ 1 \end{array} \right)^{2}$$

- Finite- and rational-ness inherited from 4PN (non trivially!)
- Schwarzschild limit OK ($m_2 \ll m_1$)
- ullet Result confirmed by explicit, indepedent calculation of ~ 100 diagrams in Blümlein et al arXiv:1902.11180
- Factorization does not hold for all diagrams at *n*-PN sectors $G^{1+n-j}v^{2j}$ (0 < $j \le n$) but for $\gtrsim 50\%$ of them.

$$V_{5PN\,static} = rac{G_N^5 m_1^3 m_2}{r^5} \left(rac{5}{16} m_1^2 + rac{91}{6} m_1 m_2 + rac{653}{6} m_2^2
ight)$$

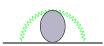
Outline

Near zone

2 Far zone

Radiation scale: Including modes with $k \sim (\omega = v/r, \omega \hat{n})$

0 point



$$\int d\omega \tilde{A}(\omega) = -\int dt V(t)$$

$$\int h_{ij}(\omega) T^{ij}$$

interactions among all possible modes (radiative and longitudinal)

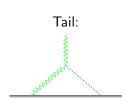
Double line represents the composite object

$$S = rac{1}{2} \int d^4 x \quad \left(E h_{00} + \epsilon_{ijk} L^i h_{0j,k} + Q_{ij} E^{ij} + rac{1}{3} O_{ijk} E^{ij,k} - rac{2}{3} J_{ij} B_{ij} + \ldots
ight)$$

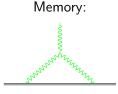
endowed with multipoles: v is the small parameter of the multipole expansion, but $G_NM\omega$ is the expansion parameter of perturbation theory.

Hereditary terms

Wform depends on the history rather than source's state at retarded time (propagation inside the light-cone)



Blanchet & Damour PRD (1988)



Christodoulou PRL (1991) (asymptotic states and IR property) Blanchet & Damour PRD (1992)

$$egin{split} Q_{ij}(t) &= Q_{ij}^{(0)}(t) + 2 extit{GNM} \int_0^\infty d au \ddot{Q}_{ij}(t- au) \left[\log\left(\mu au
ight) + rac{11}{12}
ight] \ &-rac{2}{7} \int_0^\infty d au Q_{ik}^{(3)}(t- au) Q_{kj}^{(3)}(t- au) \end{split}$$

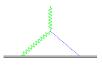
Riccardo Sturani (IIP-UFRN)

Hereditary terms

Wform depends on the history (propagation inside the light-cone)

Tail:

1pt



hereditary

Selfenergy

hereditary
Foffa & RS PRD ('13)

Galley & al. PRD ('15), Damour & al. PRD ('13)

Memory:

hereditary

instantaneous Foffa & RS 1907.02869

Conservative-dissipative interplay

Leading order power loss (i.e. quadrupole formula) from self-energy diagram:

$$S_{eff2.5PN}^{Q^{2}} = \int_{-\infty}^{\infty} \frac{\mathrm{d}k_{0}}{2\pi} \int_{\mathbf{k}} \left(\underbrace{\frac{\mathrm{d}k_{0}}{Q_{ij}} \int_{Q_{kl}}} \right)$$

$$= -2\pi G_{N} \int_{-\infty}^{\infty} \frac{\mathrm{d}k_{0}}{2\pi} \int_{\mathbf{k}} \frac{Q_{ij}(k_{0})Q_{kl}(-k_{0})}{\mathbf{k}^{2} - k_{0}^{2}} \left[\underbrace{-k_{0}^{4} \delta^{ik} \delta^{jl}}_{\sigma} + \underbrace{2k_{0}^{2} \delta^{ik} k^{j} k^{l}}_{\mathbf{A}} - \underbrace{\frac{1}{2} k^{i} k^{j} k^{k} k^{l}}_{\phi} \right]$$

$$= i \frac{G_{N}}{10} \int_{-\infty}^{\infty} \frac{\mathrm{d}k_{0}}{2\pi} |k_{0}| k_{0}^{4} Q_{ij}(k_{0}) Q^{ij}(-k_{0}),$$

Diagram purely imaginary, receives contribution from the $k_0 \sim |\vec{k}|$ region

Tail calculation

Tail self-energy diagram divergent $(\mathbf{q} \to 0, \mathbf{k} \to \infty)$

$$\begin{split} S_{pole}^{tail} &= -64\pi^2 G_N^2 E \quad \int_{-\infty}^{\infty} \frac{\mathrm{d}k_0}{2\pi} \int_{\mathbf{k}\mathbf{q}} \frac{k_0^2 Q_{ij}(k_0) Q_{kl}(-k_0)}{\mathbf{q}^2 \left[(\mathbf{k} + \mathbf{q})^2 - k_0^2 \right] \left(\mathbf{k}^2 - k_0^2 \right)} \\ &\times \left[\underbrace{-k_0^4 \delta^{ik} \delta^{jl}}_{\sigma} + \underbrace{2\mathbf{k}^2 \delta^{ik} k^j k^l}_{A} - \underbrace{\frac{1}{2}k^i k^k k^j k^l}_{\phi} \right]. \end{split}$$

has the same structure as the self-energy diagram:

$$S_{pole}^{tail} = -64\pi^2 G_d^2 E \int_{-\infty}^{\infty} \frac{\mathrm{d}k_0}{2\pi} (-k_0^2)^{d/2-1} \int_{\mathbf{k}} f\left(\frac{\mathbf{k}^2}{k_0^2}\right) \frac{Q_{ij}(k_0)Q_{kl}(-k_0)}{\mathbf{k}^2 - k_0^2} [\ldots]$$

$$f\left(\frac{\mathbf{k}^2}{k_0^2} \to 1\right) \simeq \frac{1}{\epsilon}, \ \frac{G_d^2}{\epsilon}(-k_0^2 - i0^+)^{\epsilon} \simeq G_N^2\left(\frac{1}{\epsilon} + \underbrace{\log(k_0^2\mu^2)}_{non-local\ tail} - \underbrace{i\pi}_{tail\ flux}\right)$$

Tail flux = flux $\times 2\pi G_N Mk_0$ Blanchet PRD '95, Goldberger & Ross PRD '10

 $\bullet riangle \bullet \bullet riangle riangle \bullet \bullet riangle riangle$

Action for all non-local simple tails

From the flux formula:

$$F = \frac{1}{5} \overset{\cdots}{Q}_{ij}^2 + \frac{1}{189} \overset{\cdots}{O}_{ijk}^2 + \frac{16}{45} \overset{\cdots}{J}_{ij} + \dots$$

one can then fix the tail cotribution to the flux and the non-local contribution to the self-energy

$$S_{log}^{tail} = -G_N^2 E \int_{-\infty}^{\infty} \frac{\mathrm{d}k_0}{2\pi} \log\left(\frac{k_0^2}{\mu^2}\right) \sum_{n \geq 2} k_0^{2(n+1)} c_{(I,J)}^n (I,J)^{\alpha_1 \dots \alpha_n} (k_0) (I,J)_{\alpha_1 \dots \alpha_n} (-k_0)$$

$$= G_N^2 E \int_{-\infty}^{\infty} \mathrm{d}t \sum_{n \geq 2} c_{(I,J)}^n (I,J)^{(n+1)\alpha_1 \dots \alpha_n} (t) \int_{-\infty}^{\infty} \mathrm{d}\tau \frac{1}{|\tau|} (I,J)_{\alpha_1 \dots \alpha_n}^{(n+1)} (t+\tau),$$

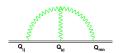
with

$$c_I^{(n)} = \frac{(n+1)(n+2)}{n(n-1)n!(2n+1)!!},$$

$$c_J^{(n)} = \frac{4n(n+2)}{(n-1)(n+1)!(2n+1)!!}.$$

as suggested in Damour, Jaranowski, Schäfer PRD '15

Memory integral



$$S^{memory} = -64\pi G_N \int \frac{k_0}{2\pi} \frac{q_0}{2\pi} Q_{ij} Q_{kl} Q_{mn} \int_{\mathbf{kq}} \frac{f_{ijklmn}(\mathbf{k}, \mathbf{q}, k_0, q_0)}{(\mathbf{q}^2 - q_0^2) ((\mathbf{k} + \mathbf{q})^2 - (k_0 + q_0)^2) (\mathbf{k}^2 - k_0^2)}$$

However divergent 2-loop master integral cancel among different polarizations, leaving a finite, local contribution to the self-energy

Far zone self energy results at 5PN with finite terms

Real part \rightarrow conservative dynamics (to be added to near zone results, starting 4PN order)

Imaginary part matches into flux formula $F \propto \overset{\dots}{Q}_{ij}^2 + \dots$

Divergent graphs regularized in dim. reg.:

divergence (and coeff. of logarithmic term) linked to imaginary part

$$\begin{split} S_{5PN\;tail} &= G_N^2 M \int \frac{dk_0}{2\pi} \left[-\frac{1}{5} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi + \frac{41}{30} \right) |Q_{ij}|^2 \right. \\ &\left. -\frac{1}{189} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi + \frac{163}{35} \right) |O_{ijk}|^2 \right. \\ &\left. -\frac{16}{45} \left(\frac{1}{\epsilon} + \log\left(k_0^2/\bar{\mu}^2\right) - i\pi - \frac{127}{60} \right) |J_{ij}|^2 \right] \\ S_{5PN\;Ltail} &= \frac{8}{15} G_N^2 \int dt \stackrel{\cdots}{Q}_{il} \stackrel{\cdots}{Q}_{jl} \epsilon_{ijk} L_k \\ S_{5PN\;memory} &= G_N^2 \int dt \left[-\frac{11}{14} \stackrel{\cdots}{Q}_{il} \stackrel{\cdots}{Q}_{jl} Q_{ij} - \frac{1}{5} \stackrel{\cdots}{Q}_{il} \stackrel{\cdots}{Q}_{jl} \stackrel{\cdots}{Q}_{ij} \right] \end{split}$$

- Imaginary part of self-energy diagrams linked to n-PN flux formula (trivial) and to divergent (and log) part of real part of tails
- Real part combines with near zone dynamics at (n + 4)-PN, its divergence fixed by flux formula at n-PN
- Log-term is non-instantaneous (but causal) adding to the conservative dynamics
- Log-term becomes instantaneous on circular orbits, contribution to E(x) agrees with 5PN log computed in Le Tiec et al. PRD (2012) and Bini & Damour PRD (2014)
- Finite terms are physical and computable independently of divergences

In-in vs. in-out

- We work with Feynman propagator within the time symmetric in-out framework, which returns conservative dynamics and averaged emission.
- The in-in formalism is appropriate for time-asymmetric problems, needed to compute back-reaction force and instantaneous emission, see Galley & Tiglio PRD (2009) and Galley, Leibovich, Porto and Ross (2016)

Conclusions

- 5PN is not so ugly as it seems, qualitatively different from lowest order (finite size effects not forbidden by effacement principle)
- Static sector solved at 5PN (with trivial computations), method helping out for non-static sectors
- Relationship established among
 - nPN flux
 - (n+1.5)PN tail flux terms
 - (n+4)PN conservative logs
 - (n+4)PN spurious poles
- Uniquely defined finite terms from (non-)hereditary derived at 5PN

Spare slides

Post-Newtonian vs. post-Minkowskian

Post-Minkowskian expansion parameter is G_NM/r , vs PN expansion

$$\mathcal{L} = -Mc^2 + \frac{\mu v^2}{2} + \frac{GM\mu}{r} + \frac{1}{c^2} [\ldots] + \frac{1}{c^4} [\ldots]$$

Terms known so far

3PM recently computed (!) by Z. Bern et al. PRL (2019)

What's next? Amplitude program with modern methods: generalized unitarity, gravity as a double copy of gauge theory.

Method of regions and far-near zone interplay

Trouble can arise when using method of region in Feyman diagrams:

• In the full theory:

$$V \supset \int dt_{1,2,2'} d^4 p \, e^{ip_{\mu}(x_1^{\mu}(t_1) - x_2^{\mu}(t_2))} \frac{p^{\alpha} p^{\beta}}{p^2} \int d^4 k \frac{e^{ik^{\mu}(x_2(t_2) - x_2(t_2'))}}{(p-k)^2 k^2}$$

$$= \int dt_{1,2,2'} d^4 p e^{ip_{\mu}(x_1^{\mu}(t_1) - x_2^{\mu}(t_2))} \frac{p^{\alpha} p^{\beta}}{p^2} \Delta (p^{\mu}(x_2(t_2) - x_2(t_2')))$$

which is both IR and UV finite

• Method of regions

$$\int dt \, d^{3}p \, e^{i\vec{p}(\vec{x}_{1}-\vec{x}_{2})} \frac{p^{i}p^{j}}{|\mathbf{p}^{2}|} \int d^{3}k \frac{1}{|\mathbf{k}|^{2}|\mathbf{p}-\mathbf{k}|^{2}} \left(1+\ldots+\frac{\omega^{6}}{|\mathbf{k}|^{6}}+\ldots\right)$$

$$= \int dt \, d^{3}p e^{i\vec{p}\cdot\vec{x}_{12}} \frac{p^{i}p^{j}}{|\mathbf{p}|^{3}} \left\{1+\ldots+\frac{1}{|\mathbf{p}|^{6}} \left[(\vec{p}\cdot\vec{v}_{1})^{3}(\vec{p}\cdot\vec{v}_{2})^{3}+\ldots+\vec{p}\cdot\dot{\vec{a}}_{1}\vec{p}\cdot\dot{\vec{a}}_{2}\right]\right\}$$