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Introduction: Spin and Twisted Spacetime
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angular momentum leads to
gravito-magnetic fields
dragging of reference frames

spin posterior probability for GW151226



Spinning bodies/particles have a minimal extension

R

V

ring of radius R and mass m
spin: S = R m V
maximal velocity: V ≤ c

⇒ minimal extension:

R =
S

mV
≥ S

mc
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Center of a spinning body (special relativity)

fast & heavy

slow & light

∆xv

spin

Spin is a 4-tensor Sµν = −Sνµ:
Spin is S ij = εijk Sk .
Mass dipole related to S i0.

Different mass centers

Need spin supplementary condition:
Pryce, Møller, Corinaldesi, Papapetrou: Sµ0 = 0

Frenkel, Mathisson, Pirani: Sµν ẋν = 0

Fokker, Tulczyjew, Dixon: Sµνpν = 0

Pryce, Newton, Wigner: m Sµ0 + Sµνpν = 0

Can be viewed as a gauge freedom
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Elementary particles

Wigner:
elementary particle → irreducible representation of the Poincaré group

Poincaré = Lorentz n translations

construct irreducible representations:
Lorentz group act on linear momentum pµ
→ mass-shell
e.g., for massive particles: pµpµ = m2

pick representative on mass-shell
e.g., pµ = kµ ≡ (m, 0, 0, 0)

little group: Lorentz transformations which leave kµ invariant
for massive particles: rotations! ⇒ label: S = 0, 1

2 , 1, ...

all irreducible representations of the Poincaré group are given by picking a
mass-shell and an irreducible representation of the little group

e.g., massive elementary particles are characterized by: m, S = 0, 1
2 , 1, ...

Jan Steinhoff (AEI) Approaches to classical spins Berlin, November 21st, 2019 6 / 27

kµ

pµ



Elementary particles

Wigner:
elementary particle → irreducible representation of the Poincaré group
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Configuration space (special relativistic)
JS, arXiv:1501.04951; Levi, JS, JHEP 1509 (2015) 219

pick configuration space: [Hanson, Regge, Ann. Phys. 87 (1974) 498–566]

(ΛA
µ, xµ) ∼ Poincaré group, ΛA

µΛB
νηµν = ηAB

⇒ group action on (ΛA
µ, xµ) is group multiplication

boost ΛA
µ → Λ̃A

µ, such that time direction Λ̃0
µ = (1, 0, 0, 0) in rest-frame

Λ̃0
µ is invariant under little group

Λ̃i
µ carries little group SO(3) index i = 1, 2, 3

Λ0
µ is redundant/gauge!
→ what is the generator of gauge trafos Cµ?
→ leave physical degrees of freedom Λ̃i

µ invariant:

{Cµ, Λ̃i
ν} = 0 ⇐ Cµ = Sµν

[
pν

p
+ Λ0

ν

]
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Spin gauge constraint vs spin supplementary condition
generator of gauge transformations:

Cµ = Sµν

[
pν

p
+ Λ0

ν

]
gauge transformations affect position:

∆xµ = {εαCα, xµ} 6= 0

gauge generator Cµ ↔ first-class constraint

⇒ Cµ = 0 ⇒ {Cµ, Cν} = 0

gauge fixing ⇒ spin supplementary condition

Λ0
µ =

pµ

p
⇒ Sµνpν = 0 Fokker, Tulczyjew, Dixon (covariant)

Λ0
µ = δµ0 ⇒ Sµν(pν + pδν0 ) = 0 Pryce, Newton, Wigner (canonical)

Λ0
µ =

2p0δµ0 − pµ

p
⇒ Sµ0 = 0 Pryce, Møller, Corinaldesi, Papapetrou

Frenkel, Mathisson, Pirani: Sµν Ẋν = 0
Jan Steinhoff (AEI) Approaches to classical spins Berlin, November 21st, 2019 9 / 27
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Jan Steinhoff (AEI) Approaches to classical spins Berlin, November 21st, 2019 9 / 27

fast & heavy

slow & light

∆xv

spin



Spin gauge constraint vs spin supplementary condition
generator of gauge transformations:

Cµ = Sµν

[
pν

p
+ Λ0

ν

]
gauge transformations affect position:

∆xµ = {εαCα, xµ} 6= 0

gauge generator Cµ ↔ first-class constraint

⇒ Cµ = 0 ⇒ {Cµ, Cν} = 0

gauge fixing ⇒ spin supplementary condition

Λ0
µ =

pµ

p
⇒ Sµνpν = 0 Fokker, Tulczyjew, Dixon (covariant)

Λ0
µ = δµ0 ⇒ Sµν(pν + pδν0 ) = 0 Pryce, Newton, Wigner (canonical)

Λ0
µ =

2p0δµ0 − pµ

p
⇒ Sµ0 = 0 Pryce, Møller, Corinaldesi, Papapetrou

Frenkel, Mathisson, Pirani: Sµν Ẋν = 0
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Action principle and coupling to gravity
ADM-type form, see talk by Gerhard Schäfer

S =

∫
−pµdxµ − 1

2 SµνΛAµdΛA
ν︸ ︷︷ ︸

p dq ∼ canonical form

−
[
λ(p2 −m2) + χµCµ

]︸ ︷︷ ︸
Dirac Hamitonian HD

dτ

use gauge invariant variables in HD(x̃µ, S̃µν , ... ): {Cα, x̃µ} = 0 = {Cα, S̃µν}

rewrite canonical form in terms of x̃µ before coupling to gravity:

⇒ S =

∫
dτ
{
− pµ

D
dτ

[
x̃µ − Sµν

pν
p2

]
︸ ︷︷ ︸

xµ

−1
2

Sµν ΛAµDΛA
ν

dτ︸ ︷︷ ︸
Ωµν

−HD

}

this action does not lead to the Mathisson-Papapetrou-Dixon equations!

parallel transport worldline to xµ, redefine linear momentum
→ new action leads to the Mathisson-Papapetrou-Dixon equations

[Vines, Kunst, Steinhoff, Hinderer, PRD 93 (2016) 103008]
see also [Bailey, Israel, Commun. math. Phys. 42 65 (1975)]
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Equations of motion

Equations of motion:

Dpµ
dτ

= 0 −1
2

RµρβαuρSβα −1
6
∇µRνρβαJνρβα − 1

2
∇µFαβDαβ + ...

DSµν

dτ
= 2p[µuν] +

4
3

R[µ
ραβJν]ραβ + 2Dα[µF ν]

α + ...

Jµναβ ∝ ∂HD

∂Rµναβ
, Dµν ∝ ∂HD

∂Fµν

Geodesic equation: momentum pµ
Mathisson (1937), Papapetrou (1951): spin / dipole Sµν

Dixon (∼1974): (see talk by Justin Vines) quadrupole Jµναβ , . . .

Traditional approach: Tµν
;ν = 0  EOM

That is, EOM for pµ and Sµν follow from generic principles!

Action approach: assume generic covariant action
Simple, but more restrictive. Still the resulting EOM have the same form!
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Canonical structure

S =

∫
−pµdxµ − 1

2 SµνΛAµDΛA
ν︸ ︷︷ ︸

B = canonical form

−HD dτ

Equations of motion for phase space coordinates q = (pµ, xµ, Sµν , ΛA
µ):

q̇n = Mnm ∂HD

∂qm = {HD, qn},

where M = (dB)−1, {X , Y} = Mmn ∂X
∂qn

∂Y
∂qm

Tradeoff: simple M vs. simple Hamiltonian vs. #DOF
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4D phase space

S =

∫
−pµdxµ − 1

2
SµνΛAµDΛA

ν︸ ︷︷ ︸
B = canonical form

−HD dτ

Use spin in local Lorentz frame, eaµeb
µ = ηab:

B = Bn(q) dqn = −
(

pµ +
1
2
ωµ

abSab

)
︸ ︷︷ ︸

Pµ

dxµ − 1
2 SabΛAadΛA

b

Poisson brackets: (all other zero)

{xµ, Pν} = δµν , {ΛA
c , Sab} = 2ΛA

dηd [aδ
c
b], {Sab, Scd} = Sacηbd − ...

What to do with λ, ξµ in HD?
E.g. gauge fixing λ = const, ξµ = 0 ⇒ HD ∝ gµνpµpν
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3D Phase spaces

S =

∫
−
(

pµ +
1
2
ωµ

abSab

)
︸ ︷︷ ︸

Pµ

dxµ − 1
2

SabΛAadΛA
b − HD dτ

make gauge choices τ = t = x0 and Λ0
a = δa

0 ⇒ ΛA
0 = δ0

A
and solve constaints (HD = 0):

S =

∫
−Pidx i − 1

2
Sij Λ

kidΛk
j︸ ︷︷ ︸

new canonical form

−(H = P0) dt

Here i , j , k , ` run through 1, 2, 3. H ≡ P0 from gµνpµpν = m2.

Poisson brackets: (all other zero)

{x i , Pj} = δi
j , {Λ`k , Sij} = −2Λ`

mδm[iδ
k
j], {Sij , Sk`} = −Sikδj` − ...
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Approaches to the relativistic binary problem
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Spin and Gravitomagnetism
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Interaction with gravito-magnetic field Ai ≈ −gi0:
1
2

SµνΛA
µDΛAν  

1
2

Sij∂iAj

→ universal for all objects!

see talk by Michele LeviS1

Ai Aj
S2

LS1S2 =
1
2

Ski
1 〈∂k Ai ∂`Aj〉

1
2

S`j2 [ignoring time integrals and δ(t1 − t2) factors]

=
1
2

Ski
1

1
2

S`j2 δij (−16πG)
∂

∂xk
1 ∂x`2

∫
dk

(2π)3
ei~k(~x1−~x2)

~k2

= −GSki
1 S`i2

∂

∂xk
1 ∂x`2

(
1

r12

)
(where r12 = |~x1 − ~x2|)
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Interaction with gravito-magnetic field Ai ≈ −gi0:
1
2

SµνΛA
µDΛAν  

1
2

Sij∂iAj

→ universal for all objects!

see talk by Michele LeviS1

Ai Aj
S2

LS1S2 =
1
2

Ski
1 〈∂k Ai ∂`Aj〉

1
2

S`j2 [ignoring time integrals and δ(t1 − t2) factors]

=
1
2

Ski
1

1
2

S`j2 δij (−16πG)
∂

∂xk
1 ∂x`2

∫
dk

(2π)3
ei~k(~x1−~x2)

~k2

= −GSki
1 S`i2

∂

∂xk
1 ∂x`2

(
1

r12

)
(where r12 = |~x1 − ~x2|)



Frame dragging

Orbital angular momentum Lij = 2x[ipj] generates rotations of the orbit

{xk , Lij} = −x iδjk + x jδik , {pk , Lij} = −piδjk + pjδik

Spin generates rotations of the body-fixed frame Λ`
k :

{Λ`k , Sij} = −Λ`iδjk + Λ`jδik

⇒ spin interactions in the Hamiltonian rotate the body-fixed frame over time!
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angular momentum/spin leads to
gravito-magnetic effects
dragging of reference frames



Results for the post-Newtonian potential
conservative part of the motion of the binary

post-Newtonian (PN) approximation: expansion around 1
c → 0 (Newton)

order c0 c−1 c−2 c−3 c−4 c−5 c−6 c−7 c−8

N 1PN 2PN 3PN 4PN

non spin " " " " "

spin-orbit " " "

Spin2 " " "

Spin3 "

Spin4 "
...

. . .

Work by many people (“just” for the spin sector): Barker, Blanchet, Bohé, Buonanno, O’Connell,
Damour, D’Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin,
Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Code for the spin part using EFT: M. Levi, JS, CQG 34 (2017), 244001
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https://doi.org/10.1088/1361-6382/aa941e
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Dynamic tides and tidal spin
[JS, T. Hinderer, A. Buonanno, A. Taracchini, PRD 94 104028 (2016)]

dynamical tides:
orbital motion can excite
oscillation modes

gravitomagnetism:
→ frame dragging effect
∼ Zeeman effect

also: redshift effect
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frame of the neutron star is dragged
in the direction of the orbital motion



Dynamic tides and tidal spin

S =

∫
−pµdxµ − PµνDQµν︸ ︷︷ ︸

B

−
{
λ
[
p2 − (m + Ht )

2]+ ...
}︸ ︷︷ ︸

HD

dτ

with the tidal (harmonic oscillator) Hamiltonian:

Ht =
1

2mQ
PµνPµν +

mQω
2
0

2
QµνQµν +

1
2

EµνQµν = ...

The tidal spin SµνQ = 4Qρ[µPν]
ρ shows up in the canonical form:

B = −
(

pµ +
1
2
ωµabSab

Q

)
︸ ︷︷ ︸

Pµ

dxµ − Pab dQab
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Equations of motion

Vary the action:

Dpµ
dτ

=
1
2

SαβQ Rαβρµẋρ − 1
6
∇µRαρβσ

[
JαρβσQ = − 3

2m3λ
p[αQρ][βpσ]

]
1

2λm
DPµν

dτ
= −mQω

2
0Qµν −

1
2

Eµν

1
2λm

DQµν

dτ
=

Pµν

mQ

Spin EOM is not fundamental, the EOMs for Qµν and Pµν are!

Using SµνQ = 4Qρ[µPν]
ρ:

DSµνQ

dτ
= 2p[µẋν] +

4
3

Rαβρ[µJν]ρβαQ

Agreement with the Mathisson-Papapetrou-Dixon equations of motion!
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Poisson brackets

B = −
(

pµ +
1
2
ωµabSab

Q

)
︸ ︷︷ ︸

Pµ

dxµ − Pab dQab

4D Poisson brackets:

{xµ, Pν} = δµν , {Qab, Pcd} = 2η(ac η
b)
d

Derived brackets:
{Sab

Q , Scd
Q } = ηacSbd

Q − ...

{Qab, Scd
Q } = ηadQcb − ... , {Pab, Scd

Q } = ηadPcb − ...

3D Poisson brackets similar.

The tidal spin Sij
Q generates rotations of Q ij and Pij → frame dragging
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Conclusions

Spin presents its own challenges:
definition of center
supplementary conditions

ADM worldline action with spin-gauge symmetry very useful:
connecting various incarnations of action principles
and canonical formalisms
close connection to quantum fields
e.g., λ(gµνpµpν + m2) vs.

√
−g(gµν∂νφ∂νφ+ m2φ2)

useful for double-copy constructions, see talk by Jan Plefka

Many things omitted and to do. . .
eikonal limit of the action with spinning fields, spinor helicity, twistor actions. . .

Thank you!
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