Approaches to classical spins

and their gravitomagnetic interaction

Jan Steinhoff

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam-Golm, Germany

KMPB conference "From Classical Gravity to Quantum Amplitudes and Back: post-Newtonian, post-Minkowskian, effective one-body, self-force, . . . "

Berlin, November 21th, 2019

Outline

- Introduction
- Action principle for spinning bodies/particles
- Phase spaces
- Spin interaction: post-Newtonian
- Tidal spin

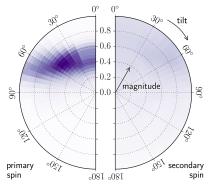
Outline

- Introduction
- Action principle for spinning bodies/particles
- Phase spaces
- Spin interaction: post-Newtonian
- 5 Tidal spin

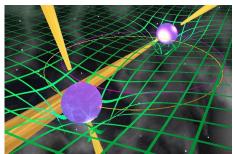
Introduction: Spin and Twisted Spacetime

angular momentum leads to

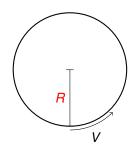
- gravito-magnetic fields
- dragging of reference frames



spin posterior probability for GW151226



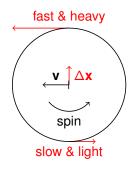
Spinning bodies/particles have a minimal extension



- ring of radius R and mass m
- spin: S = R m V
- maximal velocity: V ≤ c
- ⇒ minimal extension:

$$R = \frac{S}{mV} \ge \frac{S}{mc}$$

Center of a spinning body (special relativity)



- Spin is a 4-tensor $S^{\mu\nu} = -S^{\nu\mu}$:
 - Spin is $S^{ij} = \epsilon^{ijk} S_k$.
 - Mass dipole related to S^{i0} .
- Different mass centers

Need spin supplementary condition:

- Pryce, Møller, Corinaldesi, Papapetrou: $S^{\mu 0}=0$
- ullet Frenkel, Mathisson, Pirani: $S^{\mu
 u}\dot{x}_{
 u}=0$
- Fokker, Tulczyjew, Dixon: $S^{\mu\nu}p_{\nu}=0$
- ullet Pryce, Newton, Wigner: $m\,S^{\mu0}+S^{\mu
 u}
 ho_
 u=0$

Can be viewed as a gauge freedom

Elementary particles

Wigner:

elementary particle \rightarrow irreducible representation of the Poincaré group

Poincaré = Lorentz κ translations

construct irreducible representations:

e.g., for massive particles:
$$p_{\mu}p^{\mu}=m^2$$

• pick representative on mass-shell
e.g.,
$$p_{\mu} = k_{\mu} \equiv (m, 0, 0, 0)$$

• little group: Lorentz transformations which leave
$$k_{\mu}$$
 invariant for massive particles: rotations! \Rightarrow label: $S = 0, \frac{1}{2}, 1, ...$

all irreducible representations of the Poincaré group are given by picking a

e.g., massive elementary particles are characterized by: m, S = 0, $\frac{1}{2}$, 1, ...

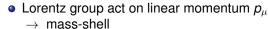
Elementary particles

Wigner:

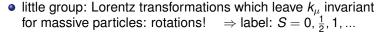
elementary particle \rightarrow irreducible representation of the Poincaré group

Poincaré = Lorentz κ translations

construct irreducible representations:



e.g., for massive particles:
$$p_{\mu}p^{\mu}=m^2$$



all irreducible representations of the Poincaré group are given by picking a mass-shell and an irreducible representation of the little group

e.g., massive elementary particles are characterized by: $m, S = 0, \frac{1}{2}, 1, ...$

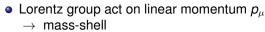
Elementary particles

Wigner:

elementary particle \rightarrow irreducible representation of the Poincaré group

Poincaré = Lorentz κ translations

construct irreducible representations:



e.g., for massive particles:
$$p_{\mu}p^{\mu}=m^2$$

- pick representative on mass-shell e.g., $p_{\mu} = k_{\mu} \equiv (m, 0, 0, 0)$
- little group: Lorentz transformations which leave k_{μ} invariant for massive particles: rotations! \Rightarrow label: $S=0,\frac{1}{2},1,...$

all irreducible representations of the Poincaré group are given by picking a mass-shell and an irreducible representation of the little group

e.g., massive elementary particles are characterized by: m, $S = 0, \frac{1}{2}, 1, ...$

Outline

- Introduction
- Action principle for spinning bodies/particles
- Phase spaces
- Spin interaction: post-Newtonian
- Tidal spin

Configuration space (special relativistic)

JS, arXiv:1501.04951; Levi, JS, JHEP 1509 (2015) 219

pick configuration space: [Hanson, Regge, Ann. Phys. 87 (1974) 498–566]

$$(\Lambda_A^{\mu}, x^{\mu}) \sim \text{Poincar\'e group}, \quad \Lambda_A^{\mu} \Lambda_B^{\nu} \eta_{\mu\nu} = \eta_{AB}$$

 \Rightarrow group action on $(\Lambda_A^{\mu}, x^{\mu})$ is group multiplication

boost $\Lambda_A{}^\mu ~\to ~\tilde{\Lambda}_A{}^\mu$, such that time direction $\tilde{\Lambda}_0{}^\mu = ($ 1, 0, 0, 0) in rest-frame

 $\tilde{\Lambda}_0^{\ \mu}$ is invariant under little group $\tilde{\Lambda}_i^{\ \mu}$ carries little group SO(3) index i=1,2,3

Λ_0^{μ} is redundant/gauge

- ightarrow what is the generator of gauge trafos \mathcal{C}_{μ} ?
- ightarrow leave physical degrees of freedom $\tilde{\Lambda}_i{}^{\mu}$ invariant

$$\{\mathcal{C}_{\mu}, \tilde{\Lambda}_{i}^{\
u}\} = 0 \qquad \Leftarrow \qquad \mathcal{C}_{\mu} = \mathcal{S}_{\mu\nu} \left[\frac{p^{\nu}}{p} + {\Lambda_{0}}^{
u} \right]$$

Configuration space (special relativistic)

JS, arXiv:1501.04951; Levi, JS, JHEP 1509 (2015) 219

pick configuration space: [Hanson, Regge, Ann. Phys. 87 (1974) 498–566]

$$(\Lambda_A^{\mu}, x^{\mu}) \sim \text{Poincar\'e group}, \quad \Lambda_A^{\mu} \Lambda_B^{\nu} \eta_{\mu\nu} = \eta_{AB}$$

 \Rightarrow group action on $(\Lambda_A^{\mu}, x^{\mu})$ is group multiplication

boost $\Lambda_A{}^\mu \to \tilde{\Lambda}_A{}^\mu$, such that time direction $\tilde{\Lambda}_0{}^\mu = (1,0,0,0)$ in rest-frame

 $\tilde{\Lambda}_0{}^{\mu}$ is invariant under little group $\tilde{\Lambda}_i{}^{\mu}$ carries little group SO(3) index i=1,2,3

Λ_0^{μ} is redundant/gauge

- ightarrow what is the generator of gauge trafos \mathcal{C}_{μ} ?
- ightarrow leave physical degrees of freedom $\tilde{\Lambda}_i{}^{\mu}$ invariant

$$\{\mathcal{C}_{\mu}, \tilde{\Lambda}_{i}^{\nu}\} = 0 \qquad \Leftarrow \qquad \mathcal{C}_{\mu} = \mathcal{S}_{\mu\nu} \left[\frac{p^{\nu}}{p} + \Lambda_{0}^{\nu} \right]$$

Configuration space (special relativistic)

JS, arXiv:1501.04951; Levi, JS, JHEP 1509 (2015) 219

pick configuration space: [Hanson, Regge, Ann. Phys. 87 (1974) 498–566]

$$(\Lambda_A^{\mu}, x^{\mu}) \sim \text{Poincar\'e group}, \quad \Lambda_A^{\mu} \Lambda_B^{\nu} \eta_{\mu\nu} = \eta_{AB}$$

 \Rightarrow group action on $(\Lambda_A^{\mu}, x^{\mu})$ is group multiplication

boost $\Lambda_A{}^\mu \to \tilde{\Lambda}_A{}^\mu$, such that time direction $\tilde{\Lambda}_0{}^\mu = (1,0,0,0)$ in rest-frame

 $\tilde{\Lambda}_0{}^{\mu}$ is invariant under little group $\tilde{\Lambda}_i{}^{\mu}$ carries little group SO(3) index i=1,2,3

Λ_0^{μ} is redundant/gauge!

- \rightarrow what is the generator of gauge trafos \mathcal{C}_{μ} ?
- \rightarrow leave physical degrees of freedom $\tilde{\Lambda}_{i}^{\mu}$ invariant:

$$\{\mathcal{C}_{\mu},\tilde{\Lambda}_{i}^{\;\nu}\} = 0 \qquad \Leftarrow \qquad \mathcal{C}_{\mu} = \mathcal{S}_{\mu\nu} \left[\frac{\underline{\rho}^{\nu}}{\underline{\rho}} + {\Lambda_{0}}^{\nu}\right]$$

Spin gauge constraint vs spin supplementary condition

generator of gauge transformations:

$$\mathcal{C}_{\mu} = \mathcal{S}_{\mu\nu} \left[\frac{p^{\nu}}{p} + {\Lambda_0}^{\nu} \right]$$

gauge transformations affect position:

$$\Delta x^{\mu} = \{\epsilon^{\alpha} \mathcal{C}_{\alpha}, x^{\mu}\} \neq 0$$

gauge generator $\mathcal{C}_{\mu} \leftrightarrow \text{first-class constrain}$

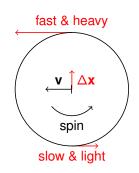
$$\Rightarrow \quad \mathcal{C}_{\mu} = \mathbf{0} \qquad \Rightarrow \qquad \{\mathcal{C}_{\mu}, \mathcal{C}_{\nu}\} = \mathbf{0}$$

gauge fixing $\ \Rightarrow\$ spin supplementary condition

$$\Lambda_0^{\mu} = \frac{p^{\mu}}{p}$$
 \Rightarrow $S_{\mu\nu}p^{\nu} = 0$

$$\Lambda_0^{\ \mu} = \delta_0^{\mu} \qquad \qquad \Rightarrow \quad S_{\mu\nu}(p^{\nu} + p\delta_0^{\nu}) = 0$$

$$\Lambda_0^{\ \mu} = \frac{2p^0\delta_0^{\mu} - p^{\mu}}{p} \quad \Rightarrow \quad S_{\mu 0} = 0$$



Fokker, Tulczyjew, Dixon (covariant)

Pryce, Newton, Wigner (canonical)

Pryce, Møller, Corinaldesi, Papapetrou

Frenkel, Mathisson, Pirani: $S_{\mu\nu}X^{\nu}=0$

Spin gauge constraint vs spin supplementary condition

generator of gauge transformations:

$$C_{\mu} = S_{\mu\nu} \left[\frac{p^{\nu}}{p} + \Lambda_0^{\nu} \right]$$

gauge transformations affect position:

$$\Delta x^{\mu} = \{\epsilon^{\alpha} \mathcal{C}_{\alpha}, x^{\mu}\} \neq 0$$

gauge generator $\mathcal{C}_{\mu} \leftrightarrow \text{first-class constraint}$

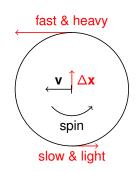
$$\Rightarrow \quad \frac{\mathcal{C}_{\mu}}{} = 0 \qquad \Rightarrow \qquad \{\mathcal{C}_{\mu}, \mathcal{C}_{\nu}\} = 0$$

gauge fixing $\,\Rightarrow\,$ spin supplementary conditior

$$\Lambda_0^{\mu} = \frac{p^{\mu}}{p} \qquad \Rightarrow \quad S_{\mu\nu}p^{\nu} = 0$$

$$\Lambda_0^{\ \mu} = \delta_0^{\mu} \qquad \qquad \Rightarrow \quad S_{\mu
u}(p^{
u} + p \delta_0^{
u}) = 0$$

$$\Lambda_0^{\ \mu} = \frac{2p^0 \delta_0^{\mu} - p^{\mu}}{p} \quad \Rightarrow \quad S_{\mu 0} = 0$$



Fokker, Tulczyjew, Dixon (covariant)

Pryce, Newton, Wigner (canonical)

Pryce, Møller, Corinaldesi, Papapetrou

Frenkel, Mathisson, Pirani: $S_{\mu\nu}X^{\nu}=0$

Spin gauge constraint vs spin supplementary condition

generator of gauge transformations:

$$\mathcal{C}_{\mu} = \mathcal{S}_{\mu\nu} \left[\frac{p^{\nu}}{p} + {\Lambda_0}^{\nu} \right]$$

gauge transformations affect position:

$$\Delta \mathbf{x}^{\mu} = \{\epsilon^{lpha} \mathcal{C}_{lpha}, \mathbf{x}^{\mu}\}
eq \mathbf{0}$$

gauge generator $\mathcal{C}_{\mu} \leftrightarrow \text{first-class constraint}$

$$\Rightarrow \quad {\mathcal C}_{\mu} = \mathbf{0} \qquad \Rightarrow \qquad \{{\mathcal C}_{\mu}, {\mathcal C}_{\nu}\} = \mathbf{0}$$

gauge fixing \Rightarrow spin supplementary condition

$$\Lambda_0{}^\mu = rac{oldsymbol{p}^\mu}{oldsymbol{p}} \qquad \qquad \Rightarrow \quad oldsymbol{S}_{\mu\nu} oldsymbol{p}^\nu = oldsymbol{0}$$

$$\Rightarrow \;\; \mathcal{S}_{\mu
u}(\pmb{p}^
u+\pmb{p}\delta_0^
u)=0$$

$$\Lambda_0{}^\mu=rac{2
ho^0\delta_0^\mu-
ho^\mu}{
ho}\quad\Rightarrow\quad S_{\mu0}=0$$

Fokker, Tulczyjew, Dixon (covariant)

Pryce, Newton, Wigner (canonical)

Pryce, Møller, Corinaldesi, Papapetrou

Frenkel, Mathisson, Pirani: $\mathcal{S}_{\mu\nu}\dot{\mathcal{X}}^{\nu}=0$

 $\Lambda_0^{\mu} = \delta_0^{\mu}$

Action principle and coupling to gravity

ADM-type form, see talk by Gerhard Schäfer

$$S = \int \underbrace{-p_{\mu} dx^{\mu} - \frac{1}{2} S_{\mu\nu} \Lambda^{A\mu} d\Lambda_{A}^{\nu}}_{p \ dq \sim \ canonical \ form} - \underbrace{\left[\lambda (p^2 - m^2) + \chi^{\mu} \mathcal{C}_{\mu}\right]}_{\text{Dirac Hamitonian } H_{D}} d\tau$$

use gauge invariant variables in $H_D(\tilde{\mathbf{x}}^\mu, \tilde{\mathbf{S}}_{\mu
u}, ...)$: $\{\mathcal{C}_\alpha, \tilde{\mathbf{x}}^\mu\} = \mathbf{0} = \{\mathcal{C}_\alpha, \tilde{\mathbf{S}}_{\mu
u}\}$

rewrite canonical form in terms of \tilde{x}^{μ} before coupling to gravity

$$\Rightarrow \qquad S = \int d\tau \left\{ -p_{\mu} \frac{D}{d\tau} \underbrace{\left[\tilde{\chi}^{\mu} - S^{\mu\nu} \frac{p_{\nu}}{p^{2}} \right]}_{\chi^{\mu}} - \frac{1}{2} S_{\mu\nu} \underbrace{\Lambda^{A\mu} \frac{D \Lambda_{A}^{\nu}}{d\tau}}_{\Omega^{\mu\nu}} - H_{D} \right\}$$

this action does not lead to the Mathisson-Papapetrou-Dixon equations!

parallel transport worldline to x^{μ} , redefine linear momentum

→ new action leads to the Mathisson-Papapetrou-Dixon equations [Vines, Kunst, Steinhoff, Hinderer, PRD 93 (2016) 103008] see also [Bailey, Israel, Commun. math. Phys. 42 65 (1975)]

10/27

Action principle and coupling to gravity

ADM-type form, see talk by Gerhard Schäfer

$$S = \int \underbrace{-p_{\mu}dx^{\mu} - \frac{1}{2}S_{\mu\nu}\Lambda^{A\mu}d\Lambda_{A}^{\nu}}_{p\ dq \sim \ canonical\ form} - \underbrace{\left[\lambda(p^{2} - m^{2}) + \chi^{\mu}\mathcal{C}_{\mu}\right]}_{Dirac\ Hamitonian\ H_{D}} d\tau$$

use gauge invariant variables in $H_D(\tilde{\mathbf{x}}^\mu, \tilde{\mathbf{S}}_{\mu\nu}, \dots)$: $\{\mathcal{C}_\alpha, \tilde{\mathbf{x}}^\mu\} = \mathbf{0} = \{\mathcal{C}_\alpha, \tilde{\mathbf{S}}_{\mu\nu}\}$

rewrite canonical form in terms of \tilde{x}^{μ} before coupling to gravity:

$$\Rightarrow \qquad S = \int d\tau \left\{ -p_{\mu} \frac{D}{d\tau} \underbrace{\left[\tilde{\mathbf{x}}^{\mu} - S^{\mu\nu} \frac{p_{\nu}}{p^{2}} \right]}_{\boldsymbol{X}^{\mu}} - \frac{1}{2} S_{\mu\nu} \underbrace{\Lambda^{A\mu} \frac{D \Lambda_{A}^{\nu}}{d\tau}}_{\Omega^{\mu\nu}} - H_{D} \right\}$$

this action does not lead to the Mathisson-Papapetrou-Dixon equations!

parallel transport worldline to x^{μ} , redefine linear momentum

→ new action leads to the Mathisson-Papapetrou-Dixon equations [Vines, Kunst, Steinhoff, Hinderer, PRD 93 (2016) 103008] see also [Bailey, Israel, Commun. math. Phys. 42 65 (1975)]

Action principle and coupling to gravity

ADM-type form, see talk by Gerhard Schäfer

$$S = \int \underbrace{-p_{\mu} dx^{\mu} - \frac{1}{2} S_{\mu\nu} \Lambda^{A\mu} d\Lambda_{A}^{\nu}}_{p \ dq \sim \ \text{canonical form}} - \underbrace{\left[\lambda (p^2 - m^2) + \chi^{\mu} \mathcal{C}_{\mu}\right]}_{\text{Dirac Hamitonian } H_{D}} d\tau$$

use gauge invariant variables in $H_D(\tilde{\mathbf{x}}^\mu, \tilde{\mathbf{S}}_{\mu\nu}, \dots)$: $\{\mathcal{C}_\alpha, \tilde{\mathbf{x}}^\mu\} = \mathbf{0} = \{\mathcal{C}_\alpha, \tilde{\mathbf{S}}_{\mu\nu}\}$

rewrite canonical form in terms of \tilde{x}^{μ} before coupling to gravity:

$$\Rightarrow \qquad S = \int d\tau \left\{ -p_{\mu} \frac{D}{d\tau} \underbrace{\left[\tilde{\mathbf{x}}^{\mu} - S^{\mu\nu} \frac{p_{\nu}}{p^{2}} \right]}_{\boldsymbol{X}^{\mu}} - \frac{1}{2} S_{\mu\nu} \underbrace{\Lambda^{A\mu} \frac{D \Lambda_{A}^{\nu}}{d\tau}}_{\Omega^{\mu\nu}} - H_{D} \right\}$$

this action does not lead to the Mathisson-Papapetrou-Dixon equations!

parallel transport worldline to x^{μ} , redefine linear momentum

→ new action leads to the Mathisson-Papapetrou-Dixon equations [Vines, Kunst, Steinhoff, Hinderer, PRD 93 (2016) 103008] see also [Bailey, Israel, Commun. math. Phys. 42 65 (1975)]

10/27

Equations of motion:

$$\begin{split} \frac{Dp_{\mu}}{d\tau} &= 0 - \frac{1}{2} R_{\mu\rho\beta\alpha} u^{\rho} S^{\beta\alpha} - \frac{1}{6} \nabla_{\mu} R_{\nu\rho\beta\alpha} J^{\nu\rho\beta\alpha} - \frac{1}{2} \nabla_{\mu} F_{\alpha\beta} D^{\alpha\beta} + \dots \\ &\frac{DS^{\mu\nu}}{d\tau} = 2 p^{[\mu} u^{\nu]} + \frac{4}{3} R^{[\mu}_{\rho\alpha\beta} J^{\nu]\rho\alpha\beta} + 2 D^{\alpha[\mu} F^{\nu]}_{\alpha} + \dots \\ &J^{\mu\nu\alpha\beta} \propto \frac{\partial H_D}{\partial R_{\mu\nu\alpha\beta}}, \quad D^{\mu\nu} \propto \frac{\partial H_D}{\partial F_{\mu\nu}} \end{split}$$

Geodesic equation:

momentum p_{μ}

- Mathisson (1937), Papapetrou (1951): sp
- Dixon (\sim 1974): (see talk by Justin Vines) **quadrupole** $J^{\mu\nu\alpha\beta},\ldots$

Traditional approach: $T^{\mu\nu}_{;\nu} = 0 \implies \text{EOM}$ That is, EOM for p_{μ} and $S^{\mu\nu}$ follow from generic principles!

Equations of motion:

$$\begin{split} \frac{\textit{D}\textit{p}_{\mu}}{\textit{d}\tau} &= 0 - \frac{1}{2}\textit{R}_{\mu\rho\beta\alpha}\textit{u}^{\rho}\textit{S}^{\beta\alpha} - \frac{1}{6}\nabla_{\mu}\textit{R}_{\nu\rho\beta\alpha}\textit{J}^{\nu\rho\beta\alpha} - \frac{1}{2}\nabla_{\mu}\textit{F}_{\alpha\beta}\textit{D}^{\alpha\beta} + \dots \\ \frac{\textit{D}\textit{S}^{\mu\nu}}{\textit{d}\tau} &= 2\textit{p}^{[\mu}\textit{u}^{\nu]} + \frac{4}{3}\textit{R}^{[\mu}_{\rho\alpha\beta}\textit{J}^{\nu]\rho\alpha\beta} + 2\textit{D}^{\alpha[\mu}\textit{F}^{\nu]}_{\alpha} + \dots \\ \textit{J}^{\mu\nu\alpha\beta} &\propto \frac{\partial\textit{H}_{D}}{\partial\textit{R}_{\mu\nu\alpha\beta}}, \quad \textit{D}^{\mu\nu} &\propto \frac{\partial\textit{H}_{D}}{\partial\textit{F}_{\mu\nu}} \end{split}$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974): (see talk by Justin Vines)

momentum p_{μ}

spin / dipole $\mathcal{S}^{\mu
u}$

quadrupole $J^{\mu
ulphaeta}$, .

Traditional approach: $T^{\mu\nu}{}_{;\nu} = 0 \rightsquigarrow \text{EOM}$ That is, EOM for p_{μ} and $S^{\mu\nu}$ follow from generic principles!

Equations of motion:

$$\begin{split} \frac{Dp_{\mu}}{d\tau} &= 0 - \frac{1}{2}R_{\mu\rho\beta\alpha}u^{\rho}S^{\beta\alpha} - \frac{1}{6}\nabla_{\mu}R_{\nu\rho\beta\alpha}J^{\nu\rho\beta\alpha} - \frac{1}{2}\nabla_{\mu}F_{\alpha\beta}D^{\alpha\beta} + \dots \\ &\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu}u^{\nu]} + \frac{4}{3}R^{[\mu}_{\rho\alpha\beta}J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu}F^{\nu]}_{\alpha} + \dots \\ &J^{\mu\nu\alpha\beta} \propto \frac{\partial H_D}{\partial R_{\mu\nu\alpha\beta}}, \quad D^{\mu\nu} \propto \frac{\partial H_D}{\partial F_{\mu\nu}} \end{split}$$

Geodesic equation:

- momentum p_{μ}
- Mathisson (1937), Papapetrou (1951):
 - spin / dipole $\mathcal{S}^{\mu
 u}$
- Dixon (\sim 1974): (see talk by Justin Vines)
 - lk by Justin Vines) quadrupole $J^{\mu\nu\alpha\beta}, \ldots$

Traditional approach: $T^{\mu\nu}_{;\nu} = 0 \rightsquigarrow \text{EOM}$ That is, EOM for p_{μ} and $S^{\mu\nu}$ follow from generic principles!

Equations of motion:

$$\begin{split} \frac{Dp_{\mu}}{d\tau} &= 0 - \frac{1}{2}R_{\mu\rho\beta\alpha}u^{\rho}S^{\beta\alpha} - \frac{1}{6}\nabla_{\mu}R_{\nu\rho\beta\alpha}J^{\nu\rho\beta\alpha} - \frac{1}{2}\nabla_{\mu}F_{\alpha\beta}D^{\alpha\beta} + \dots \\ &\frac{DS^{\mu\nu}}{d\tau} = 2p^{[\mu}u^{\nu]} + \frac{4}{3}R^{[\mu}_{\rho\alpha\beta}J^{\nu]\rho\alpha\beta} + 2D^{\alpha[\mu}F^{\nu]}_{\alpha} + \dots \\ &J^{\mu\nu\alpha\beta} \propto \frac{\partial H_D}{\partial R_{\mu\nu\alpha\beta}}, \quad D^{\mu\nu} \propto \frac{\partial H_D}{\partial F_{\mu\nu}} \end{split}$$

Geodesic equation:

- momentum p_{μ}
- Mathisson (1937), Papapetrou (1951): spin / dipole $S^{\mu\nu}$
- Dixon (\sim 1974): (see talk by Justin Vines) quadrupole $J^{\mu\nu\alpha\beta},\ldots$

Traditional approach: $T^{\mu\nu}_{;\nu}=0 \rightsquigarrow \text{EOM}$ That is, EOM for p_{μ} and $S^{\mu\nu}$ follow from generic principles!

Outline

- Introduction
- Action principle for spinning bodies/particles
- Phase spaces
- Spin interaction: post-Newtonian
- Tidal spin

Canonical structure

$$S = \int \underbrace{-p_{\mu}dx^{\mu} - \frac{1}{2}S_{\mu\nu}\Lambda^{A\mu}D\Lambda_{A}^{\nu}}_{B = \text{canonical form}} -H_{D}d\tau$$

Equations of motion for phase space coordinates $q=(p_{\mu},x^{\mu},\mathcal{S}_{\mu\nu},\Lambda_{A}^{\mu})$:

$$\dot{q}^n = M^{nm} \frac{\partial H_D}{\partial q^m} = \{H_D, q^n\},$$

where
$$M = (dB)^{-1}$$
, $\{X, Y\} = M^{mn} \frac{\partial X}{\partial q^n} \frac{\partial Y}{\partial q^m}$

Tradeoff: simple M vs. simple Hamiltonian vs. #DOF

4D phase space

$$S = \int \underbrace{-\rho_{\mu} dx^{\mu} - \frac{1}{2} S_{\mu\nu} \Lambda^{A\mu} D \Lambda_{A}^{\nu}}_{B = \text{canonical form}} - H_{D} d\tau$$

Use spin in local Lorentz frame, $e_{a\mu}e_b{}^\mu=\eta_{ab}$:

$$B = B_n(q) dq^n = -\underbrace{\left(p_{\mu} + \frac{1}{2}\omega_{\mu}^{ab}S_{ab}\right)}_{P_{\mu}} dx^{\mu} - \frac{1}{2}S_{ab}\Lambda^{Aa}d\Lambda_{A}^{b}$$

Poisson brackets: (all other zero)

$$\{x^{\mu}, P_{\nu}\} = \delta^{\mu}_{\nu}, \quad \{\Lambda_{A}{}^{c}, S_{ab}\} = 2\Lambda_{A}{}^{d}\eta_{d[a}\delta^{c}_{b]}, \quad \{S_{ab}, S_{cd}\} = S_{ac}\eta_{bd} - ...$$

What to do with λ , ξ^{μ} in H_D ? E.g. gauge fixing $\lambda = \text{const}$, $\xi^{\mu} = 0 \quad \Rightarrow \quad H_D \propto g^{\mu\nu} p_{\mu} p_{\nu}$

3D Phase spaces

$$S=\int -\underbrace{\left(p_{\mu}+rac{1}{2}\omega_{\mu}{}^{ab}S_{ab}
ight)}_{P_{\mu}}dx^{\mu}-rac{1}{2}S_{ab}\Lambda^{Aa}d\Lambda_{A}{}^{b}-H_{D}\,d au$$

make gauge choices $\tau=t=x^0$ and $\Lambda_0{}^a=\delta_0^a\Rightarrow \Lambda_A{}^0=\delta_A^0$ and solve constaints $(H_D=0)$:

$$S = \int \underbrace{-P_i dx^i - \frac{1}{2} S_{ij} \Lambda^{ki} d\Lambda_k^j}_{\text{new canonical form}} - (H = P_0) dt$$

Here i, j, k, ℓ run through 1, 2, 3. $H \equiv P_0$ from $g^{\mu\nu}p_{\mu}p_{\nu} = m^2$.

Poisson brackets: (all other zero)

$$\{\boldsymbol{x}^i, \boldsymbol{P}_j\} = \delta^i_j, \quad \{\Lambda_\ell{}^k, \boldsymbol{S}_{ij}\} = -2\Lambda_\ell{}^m \delta_{m[i} \delta^k_{j]}, \quad \{S_{ij}, S_{k\ell}\} = -S_{ik} \delta_{j\ell} - \dots$$

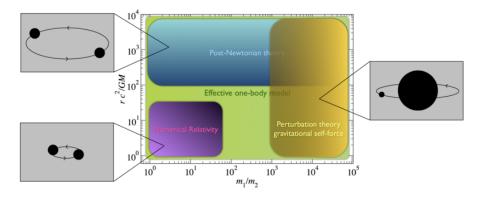
Literature

```
Hanson, Regge, Ann. Phys. 87 (1974) 498–566
Khriplovich, Sov. Phys. JETP 69 (1989) 217
Yee, Bander, PRD 48 (1993) 2797–2799
Porto, PRD 73 (2006) 104031
Porto, PRD 78 (2008) 044012; 81 (2010) 029904
JS, Schäfer, EPL 87 (2009) 50004
JS, arXiv:1412.3251
Levi, JS, JHEP 1509 (2015) 219
JS, arXiv:1501.04951
d'Ambrosi, Kumar, van Holten, Phys. Lett. B743 (2015) 478–483
Vines, Kunst, JS, Hinderer, PRD 93 (2016) 103008
Witzany, JS, Lukes-Gerakopoulos, CQG 36 (2019) 075003
```

Outline

- Introduction
- Action principle for spinning bodies/particles
- Phase spaces
- Spin interaction: post-Newtonian
- Tidal spin

Approaches to the relativistic binary problem



Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2} \textit{S}_{\mu\nu} \textit{\Lambda}_{\textit{A}}{}^{\mu} \overset{\textbf{D}}{\textit{D}} \textit{\Lambda}^{\textit{A}\nu} \rightsquigarrow \frac{1}{2} \textit{S}^{\textit{ij}} \partial_{\textit{i}} \textit{A}_{\textit{j}}$$

$$\begin{split} L_{S_1S_2} = & \frac{1}{2} S_1^{ki} \ \langle \partial_k A_i \ \partial_\ell A_j \rangle \ \frac{1}{2} S_2^{\ell j} \qquad \text{[ignoring time integrals and } \delta(t_1 - t_2) \text{ factors]} \\ = & \frac{1}{2} S_1^{ki} \ \frac{1}{2} S_2^{\ell j} \ \delta_{ij} (-16\pi G) \frac{\partial}{\partial x_1^k \partial x_2^\ell} \int \frac{dk}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x_1} - \vec{x_2})}}{\vec{k}^2} \\ = & - G S_1^{ki} S_2^{\ell j} \frac{\partial}{\partial x_1^k \partial x_2^\ell} \left(\frac{1}{r_{12}}\right) \qquad \text{(where } r_{12} = |\vec{x}_1 - \vec{x}_2|\text{)} \end{split}$$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2} \textit{S}_{\mu\nu} \textit{\Lambda}_{\textit{A}}{}^{\mu} \overset{\textbf{D}}{\textbf{D}} \textit{\Lambda}^{\textit{A}\nu} \rightsquigarrow \frac{1}{2} \textit{S}^{\textit{ij}} \partial_{\textit{i}} \textit{A}_{\textit{j}}$$

 \rightarrow universal for all objects!

$$S_1$$
 A_i A_j S_2

see talk by Michele Levi

$$\begin{split} \boldsymbol{L}_{S_1S_2} = & \frac{1}{2} S_1^{ki} \; \langle \partial_k \mathbf{A}_i \; \partial_\ell \mathbf{A}_j \rangle \; \frac{1}{2} S_2^{\ell j} \qquad \text{[ignoring time integrals and } \delta(t_1 - t_2) \; \text{factors]} \\ = & \frac{1}{2} S_1^{ki} \; \frac{1}{2} S_2^{\ell j} \; \delta_{ij} (-16\pi G) \frac{\partial}{\partial x_1^k \partial x_2^\ell} \int \frac{dk}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x_1} - \vec{x_2})}}{\vec{k}^2} \\ = & - G S_1^{ki} S_2^{\ell i} \frac{\partial}{\partial x_1^k \partial x_2^\ell} \left(\frac{1}{r_{12}} \right) \qquad \text{(where } r_{12} = |\vec{x}_1 - \vec{x}_2|) \end{split}$$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2} \mathcal{S}_{\mu\nu} \Lambda_{A}{}^{\mu} {\color{red} \textbf{D}} \Lambda^{A\nu} \rightsquigarrow \frac{1}{2} \mathcal{S}^{ij} \partial_{i} \textit{A}_{j}$$

$$S_1 = A_i - A_j - A_j$$
 see talk by Michele Levi

$$\begin{split} L_{S_1S_2} = & \frac{1}{2} S_1^{ki} \; \langle \partial_k \mathbf{A}_i \; \partial_\ell \mathbf{A}_j \rangle \; \frac{1}{2} S_2^{\ell j} \qquad \text{[ignoring time integrals and } \delta(t_1 - t_2) \; \text{factors]} \\ = & \frac{1}{2} S_1^{ki} \; \frac{1}{2} S_2^{\ell j} \; \delta_{ij} (-16\pi G) \frac{\partial}{\partial x_1^k \partial x_2^\ell} \int \frac{dk}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x_1} - \vec{x_2})}}{\vec{k}^2} \\ = & - G S_1^{ki} S_2^{\ell i} \; \frac{\partial}{\partial x_1^k \partial x_2^\ell} \left(\frac{1}{r_{12}} \right) \qquad \text{(where } r_{12} = |\vec{x}_1 - \vec{x}_2|) \end{split}$$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2} S_{\mu\nu} \Lambda_{\mathcal{A}}{}^{\mu} {}^{\mathcal{D}} \! \Lambda^{A\nu} \rightsquigarrow \frac{1}{2} S^{ij} \partial_i A_j$$

$$S_1 = A_i - A_j - S_2$$
 see talk by Michele Levi

$$\begin{split} L_{S_1S_2} = & \frac{1}{2} S_1^{ki} \ \langle \partial_k \mathbf{A}_i \ \partial_\ell \mathbf{A}_j \rangle \ \frac{1}{2} S_2^{\ell j} \qquad \text{[ignoring time integrals and } \delta(t_1 - t_2) \text{ factors]} \\ = & \frac{1}{2} S_1^{ki} \ \frac{1}{2} S_2^{\ell j} \ \delta_{ij} (-16\pi G) \frac{\partial}{\partial x_1^k \partial x_2^\ell} \int \frac{dk}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x_1} - \vec{x_2})}}{\vec{k}^2} \\ = & - G S_1^{ki} S_2^{\ell j} \frac{\partial}{\partial x_1^k \partial x_2^\ell} \left(\frac{1}{r_{12}}\right) \qquad \text{(where } r_{12} = |\vec{x}_1 - \vec{x}_2|\text{)} \end{split}$$

Interaction with gravito-magnetic field $A_i \approx -g_{i0}$:

$$\frac{1}{2} S_{\mu\nu} \Lambda_{\mathcal{A}}{}^{\mu} {}^{\mathcal{D}} \! \Lambda^{A\nu} \rightsquigarrow \frac{1}{2} S^{ij} \partial_i A_j$$

$$S_1 = A_i - A_j - A_j$$
 see talk by Michele Levi

$$\begin{split} L_{S_1S_2} = & \frac{1}{2} S_1^{ki} \ \langle \partial_k A_i \ \partial_\ell A_j \rangle \ \frac{1}{2} S_2^{\ell j} \qquad \text{[ignoring time integrals and } \delta(t_1 - t_2) \text{ factors]} \\ = & \frac{1}{2} S_1^{ki} \ \frac{1}{2} S_2^{\ell j} \ \delta_{ij} (-16\pi G) \frac{\partial}{\partial x_1^k \partial x_2^\ell} \int \frac{dk}{(2\pi)^3} \frac{e^{i\vec{k}(\vec{x_1} - \vec{x_2})}}{\vec{k}^2} \\ = & - G S_1^{ki} S_2^{\ell j} \frac{\partial}{\partial x_1^k \partial x_2^\ell} \left(\frac{1}{r_{12}}\right) \qquad \text{(where } r_{12} = |\vec{x}_1 - \vec{x}_2|\text{)} \end{split}$$

Frame dragging

angular momentum/spin leads to

- gravito-magnetic effects
- dragging of reference frames

Orbital angular momentum $L_{ij} = 2x_{[i}p_{j]}$ generates rotations of the orbit

$$\{x^k, L_{ij}\} = -x^i \delta_{jk} + x^j \delta_{ik}, \quad \{p_k, L_{ij}\} = -p_i \delta_{jk} + p_j \delta_{ik}$$

Spin generates rotations of the body-fixed frame Λ_{ℓ}^{k} :

$$\{\Lambda_{\ell k}, S_{ij}\} = -\Lambda_{\ell i}\delta_{jk} + \Lambda_{\ell j}\delta_{ik}$$

⇒ spin interactions in the Hamiltonian rotate the body-fixed frame over time!

Results for the post-Newtonian potential

conservative part of the motion of the binary

post-Newtonian (PN) approximation: expansion around $\frac{1}{c} \rightarrow 0$ (Newton)

order	<i>с</i> ⁰ N	c^{-1}	c ⁻² 1PN	c^{-3}	c ⁻⁴ 2PN	c^{-5}	c ⁻⁶ 3PN	c^{-7}	c ⁻⁸ 4PN
non spin	~		~		~		~		✓
spin-orbit				/		/		/	
Spin ²					✓		✓		✓
Spin ³								✓	
Spin ⁴									✓
:									٠

Work by many people ("just" for the spin sector): Barker, Blanchet, Bohé, Buonanno, O'Connell, Damour, D'Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin, Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Code for the spin part using EFT: M. Levi, JS, CQG 34 (2017), 244001

21/27

Outline

- Introduction
- 2 Action principle for spinning bodies/particles
- Phase spaces
- Spin interaction: post-Newtonian
- Tidal spin

Dynamic tides and tidal spin

[JS, T. Hinderer, A. Buonanno, A. Taracchini, PRD 94 104028 (2016)]

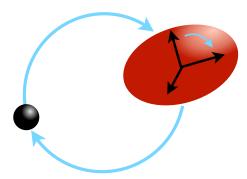
dynamical tides: orbital motion can excite oscillation modes

gravitomagnetism:

 $\rightarrow \text{frame dragging effect}$

 \sim Zeeman effect

also: redshift effect



frame of the neutron star is dragged in the direction of the orbital motion

Dynamic tides and tidal spin

$$S = \int \underbrace{-p_{\mu}dx^{\mu} - P_{\mu\nu}DQ^{\mu\nu}}_{B} - \underbrace{\left\{\lambda \left[p^{2} - (m + H_{t})^{2}\right] + ...\right\}}_{H_{D}} d\tau$$

with the tidal (harmonic oscillator) Hamiltonian:

$$H_t = \frac{1}{2m_Q}P_{\mu\nu}P^{\mu\nu} + \frac{m_Q\omega_0^2}{2}Q_{\mu\nu}Q^{\mu\nu} + \frac{1}{2}E_{\mu\nu}Q^{\mu\nu} = ...$$

The tidal spin $S_Q^{\mu\nu}=4Q^{\rho[\mu}P^{\nu]}{}_{
ho}$ shows up in the canonical form:

$$B = -\underbrace{\left(p_{\mu} + rac{1}{2}\omega_{\mu ab}S_{Q}^{ab}
ight)}_{P_{\mu}}dx^{\mu} - P_{ab}\,dQ^{ab}$$

Vary the action:

$$\begin{split} \frac{Dp_{\mu}}{d\tau} &= \frac{1}{2} S_Q^{\alpha\beta} R_{\alpha\beta\rho\mu} \dot{x}^{\rho} - \frac{1}{6} \nabla_{\mu} R_{\alpha\rho\beta\sigma} \left[J_Q^{\alpha\rho\beta\sigma} = -\frac{3}{2m^3 \lambda} p^{[\alpha} Q^{\rho][\beta} p^{\sigma]} \right] \\ &\frac{1}{2\lambda m} \frac{DP_{\mu\nu}}{d\tau} = -m_Q \omega_0^2 Q_{\mu\nu} - \frac{1}{2} E_{\mu\nu} \\ &\frac{1}{2\lambda m} \frac{DQ^{\mu\nu}}{d\tau} = \frac{P^{\mu\nu}}{m_Q} \end{split}$$

Spin EOM is not fundamental, the EOMs for $Q^{\mu\nu}$ and $P_{\mu\nu}$ are!

Using
$$S_Q^{\mu
u} = 4 Q^{
ho [\mu} P^{
u]}{}_{
ho}$$

$$rac{DS_Q^{\mu
u}}{d au} = 2 p^{[\mu} \dot{x}^{
u]} + rac{4}{3} R_{lphaeta
ho}{}^{[\mu} J_Q^{
u]
hoetalpha}$$

Agreement with the Mathisson-Papapetrou-Dixon equations of motion!

Vary the action:

$$\begin{split} \frac{Dp_{\mu}}{d\tau} &= \frac{1}{2} S_Q^{\alpha\beta} R_{\alpha\beta\rho\mu} \dot{x}^{\rho} - \frac{1}{6} \nabla_{\mu} R_{\alpha\rho\beta\sigma} \left[J_Q^{\alpha\rho\beta\sigma} = -\frac{3}{2m^3 \lambda} p^{[\alpha} Q^{\rho][\beta} p^{\sigma]} \right] \\ &\frac{1}{2\lambda m} \frac{DP_{\mu\nu}}{d\tau} = -m_Q \omega_0^2 Q_{\mu\nu} - \frac{1}{2} E_{\mu\nu} \\ &\frac{1}{2\lambda m} \frac{DQ^{\mu\nu}}{d\tau} = \frac{P^{\mu\nu}}{m_Q} \end{split}$$

Spin EOM is not fundamental, the EOMs for $Q^{\mu\nu}$ and $P_{\mu\nu}$ are!

Using
$$S_Q^{\mu
u} = 4 Q^{
ho [\mu} P^{
u]}{}_{
ho}$$
:

$$\frac{DS_Q^{\mu\nu}}{d\tau} = 2p^{[\mu}\dot{x}^{\nu]} + \frac{4}{3}R_{\alpha\beta\rho}{}^{[\mu}J_Q^{\nu]\rho\beta\alpha}$$

Agreement with the Mathisson-Papapetrou-Dixon equations of motion!

Poisson brackets

$$B=-\underbrace{\left(p_{\mu}+rac{1}{2}\omega_{\mu ab}S_{Q}^{ab}
ight)}_{P_{\mu}}dx^{\mu}-P_{ab}\,dQ^{ab}$$

4D Poisson brackets:

$$\{ oldsymbol{x}^{\mu}, oldsymbol{P}_{
u} \} = \delta^{\mu}_{
u}, \quad \{ oldsymbol{Q}^{ extsf{ab}}, oldsymbol{P}_{ extsf{cd}} \} = 2 \eta^{(extsf{a}}_{ extsf{c}} \eta^{ extsf{b})}_{ extsf{d}}$$

Derived brackets:

$$\{S_Q^{ab},S_Q^{cd}\}=\eta^{ac}S_Q^{bd}-...$$
 $\{Q^{ab},S_Q^{cd}\}=\eta^{ad}Q^{cb}-...,\quad \{P^{ab},S_Q^{cd}\}=\eta^{ad}P^{cb}-...$

3D Poisson brackets similar.

The tidal spin S_Q^{ij} generates rotations of Q^{ij} and P_{ij} ightarrow frame dragging

Conclusions

Spin presents its own challenges:

- definition of center
- supplementary conditions

ADM worldline action with spin-gauge symmetry very useful:

- connecting various incarnations of action principles and canonical formalisms
- close connection to quantum fields e.g., $\lambda(g^{\mu\nu}p_{\mu}p_{\nu}+m^2)$ vs. $\sqrt{-g}(g^{\mu\nu}\partial_{\nu}\phi\partial_{\nu}\phi+m^2\phi^2)$
- useful for double-copy constructions, see talk by Jan Plefka

Many things omitted and to do... eikonal limit of the action with spinning fields, spinor helicity, twistor actions...

Thank you!

Conclusions

Spin presents its own challenges:

- definition of center
- supplementary conditions

ADM worldline action with spin-gauge symmetry very useful:

- connecting various incarnations of action principles and canonical formalisms
- close connection to quantum fields e.g., $\lambda(g^{\mu\nu}p_{\mu}p_{\nu}+m^2)$ vs. $\sqrt{-g}(g^{\mu\nu}\partial_{\nu}\phi\partial_{\nu}\phi+m^2\phi^2)$
- useful for double-copy constructions, see talk by Jan Plefka

Many things omitted and to do... eikonal limit of the action with spinning fields, spinor helicity, twistor actions...

Thank you!