Approaches to classical spins

 and their gravitomagnetic interaction
Jan Steinhoff

Max-Planck-Institute for Gravitational Physics (Albert-Einstein-Institute), Potsdam-Golm, Germany

KMPB conference "From Classical Gravity to Quantum Amplitudes and Back: post-Newtonian, post-Minkowskian, effective one-body, self-force, ..."

Berlin, November 21th, 2019

Outline

(9) Introduction
(2) Action principle for spinning bodies/particles
(3) Phase spaces

4 Spin interaction: post-Newtonian
(5) Tidal spin

Outline

(1) Introduction
(2) Action principle for spinning bodies/particles
(3) Phase spaces

4 Spin interaction: post-Newtonian
(5) Tidal spin

Introduction: Spin and Twisted Spacetime

angular momentum leads to

- gravito-magnetic fields
- dragging of reference frames

spin posterior probability for GW151226

Spinning bodies/particles have a minimal extension

- ring of radius R and mass m
- spin: $S=R m V$
- maximal velocity: $V \leq c$
\Rightarrow minimal extension:

$$
R=\frac{S}{m V} \geq \frac{S}{m c}
$$

Center of a spinning body (special relativity)

- Spin is a 4-tensor $S^{\mu \nu}=-S^{\nu \mu}$:
- Spin is $S^{i j}=\epsilon^{i j k} S_{k}$.
- Mass dipole related to $S^{i 0}$.
- Different mass centers

Need spin supplementary condition:

- Pryce, Møller, Corinaldesi, Papapetrou: $\quad S^{\mu 0}=0$
- Frenkel, Mathisson, Pirani: $S^{\mu \nu} \dot{\chi}_{\nu}=0$
- Fokker, Tulczyjew, Dixon: $S^{\mu \nu} p_{\nu}=0$
- Pryce, Newton, Wigner: $m S^{\mu 0}+S^{\mu \nu} p_{\nu}=0$

Can be viewed as a gauge freedom

Elementary particles

Wigner:

elementary particle \rightarrow irreducible representation of the Poincaré group
Poincaré $=$ Lorentz \ltimes translations

```
construct irreducible representations:
    - Lorentz group act on linear momentum p
    mass-shell
    e.g., for massive particles: }\mp@subsup{p}{\mu}{}\mp@subsup{p}{}{\mu}=\mp@subsup{m}{}{2
    - pick representative on mass-shell
    e.g., }\mp@subsup{p}{\mu}{}=\mp@subsup{k}{\mu}{}\equiv(m,0,0,0
    - little group: Lorentz transformations which leave k}\mp@subsup{k}{\mu}{}\mathrm{ invariant
    for massive particles: rotations! }=>\mathrm{ label: }S=0,\frac{1}{2},1\mathrm{ ,
```

all irreducible representations of the Poincaré group are given by picking a
mass-shell and an irreducible representation of the little aroup

[^0]
Elementary particles

Wigner:

elementary particle \rightarrow irreducible representation of the Poincaré group
Poincaré $=$ Lorentz \ltimes translations
construct irreducible representations:

- Lorentz group act on linear momentum p_{μ} \rightarrow mass-shell

e.g., for massive particles: $p_{\mu} p^{\mu}=m^{2}$
- pick representative on mass-shell
e.g., $p_{\mu}=k_{\mu} \equiv(m, 0,0,0)$
- little group: Lorentz transformations which leave k_{μ} invariant for massive particles: rotations! \Rightarrow label: $S=0, \frac{1}{2}, 1, \ldots$
all irreducible representations of the Poincaré group are given by picking a mass-shell and an irreducible representation of the little group

Elementary particles

Wigner:

elementary particle \rightarrow irreducible representation of the Poincaré group
Poincaré $=$ Lorentz \ltimes translations
construct irreducible representations:

- Lorentz group act on linear momentum p_{μ} \rightarrow mass-shell
e.g., for massive particles: $p_{\mu} p^{\mu}=m^{2}$
- pick representative on mass-shell e.g., $p_{\mu}=k_{\mu} \equiv(m, 0,0,0)$
- little group: Lorentz transformations which leave k_{μ} invariant for massive particles: rotations! \Rightarrow label: $S=0, \frac{1}{2}, 1, \ldots$
all irreducible representations of the Poincaré group are given by picking a mass-shell and an irreducible representation of the little group
e.g., massive elementary particles are characterized by: $m, S=0, \frac{1}{2}, 1, \ldots$

Outline

(9) Introduction

(2) Action principle for spinning bodies/particles
(3) Phase spaces

4 Spin interaction: post-Newtonian
(5) Tidal spin

Configuration space (special relativistic)

JS, arXiv:1501.04951; Levi, JS, JHEP 1509 (2015) 219
pick configuration space: [Hanson, Regge, Ann. Phys. 87 (1974) 498-566]
$\left(\Lambda_{A}{ }^{\mu}, X^{\mu}\right) \sim$ Poincaré group, $\quad \Lambda_{A}{ }^{\mu} \Lambda_{B}{ }^{\nu} \eta_{\mu \nu}=\eta_{A B}$
\Rightarrow group action on $\left(\Lambda_{A}{ }^{\mu}, x^{\mu}\right)$ is group multiplication
boost $\Lambda_{A}{ }^{\mu} \rightarrow \tilde{\Lambda}_{A}{ }^{\mu}$, such that time direction $\tilde{\Lambda}_{0}^{\mu}=(1,0,0,0)$ in rest-frame
$\tilde{\Lambda}_{0}{ }^{\mu}$ is invariant under little group
carries little group $\mathrm{SO}(3)$ index $i=1,2,3$
is redundant/gauge!
\rightarrow what is the generator of gauge trafos C_{μ} ?
\rightarrow leave physical degrees of freedom $\tilde{\Lambda}_{i}^{\mu}$ invariant:

Configuration space (special relativistic)

JS, arXiv:1501.04951; Levi, JS, JHEP 1509 (2015) 219
pick configuration space: [Hanson, Regge, Ann. Phys. 87 (1974) 498-566]
$\left(\Lambda_{A}{ }^{\mu}, X^{\mu}\right) \sim$ Poincaré group, $\quad \Lambda_{A}{ }^{\mu} \Lambda_{B}{ }^{\nu} \eta_{\mu \nu}=\eta_{A B}$
\Rightarrow group action on $\left(\Lambda_{A}{ }^{\mu}, x^{\mu}\right)$ is group multiplication
boost $\Lambda_{A}{ }^{\mu} \rightarrow \tilde{\Lambda}_{A}{ }^{\mu}$, such that time direction $\tilde{\Lambda}_{0}{ }^{\mu}=(1,0,0,0)$ in rest-frame
$\tilde{\Lambda}_{0}{ }^{\mu}$ is invariant under little group
$\tilde{\Lambda}_{i}{ }^{\mu}$ carries little group $\mathrm{SO}(3)$ index $i=1,2,3$
μ is redundant/gauge!
\rightarrow what is the generator of gauge trafos $\mathcal{C}_{\mu} ?$
\rightarrow leave physical degrees of freedom $\tilde{\Lambda}_{i}^{\mu}$ invariant:

Configuration space (special relativistic)

JS, arXiv:1501.04951; Levi, JS, JHEP 1509 (2015) 219
pick configuration space: [Hanson, Regge, Ann. Phys. 87 (1974) 498-566]

$$
\left(\Lambda_{A}{ }^{\mu}, x^{\mu}\right) \sim \text { Poincaré group, } \quad \Lambda_{A}{ }^{\mu} \Lambda_{B}{ }^{\nu} \eta_{\mu \nu}=\eta_{A B}
$$

\Rightarrow group action on $\left(\Lambda_{A^{\mu}}, x^{\mu}\right)$ is group multiplication
boost $\Lambda_{A}{ }^{\mu} \rightarrow \tilde{\Lambda}_{A}{ }^{\mu}$, such that time direction $\tilde{\Lambda}_{0}{ }^{\mu}=(1,0,0,0)$ in rest-frame
$\tilde{\Lambda}_{0}{ }^{\mu}$ is invariant under little group
$\tilde{\Lambda}_{i}{ }^{\mu}$ carries little group $\mathrm{SO}(3)$ index $i=1,2,3$
$\Lambda_{0}{ }^{\mu}$ is redundant/gauge!
\rightarrow what is the generator of gauge trafos \mathcal{C}_{μ} ?
\rightarrow leave physical degrees of freedom $\tilde{\Lambda}_{i}{ }^{\mu}$ invariant:

$$
\left\{\mathcal{C}_{\mu}, \tilde{\Lambda}_{i}^{\nu}\right\}=0 \quad \Leftarrow \quad \mathcal{C}_{\mu}=S_{\mu \nu}\left[\frac{p^{\nu}}{p}+\Lambda_{0}^{\nu}\right]
$$

Spin gauge constraint vs spin supplementary condition

 generator of gauge transformations:$$
\mathcal{C}_{\mu}=S_{\mu \nu}\left[\frac{p^{\nu}}{p}+\Lambda_{0}{ }^{\nu}\right]
$$

gauge transformations affect position:

$$
\Delta x^{\mu}=\left\{\epsilon^{\alpha} \mathcal{C}_{\alpha}, x^{\mu}\right\} \neq 0
$$

gauge fixing \Rightarrow spin supplementary condition

Spin gauge constraint vs spin supplementary condition

 generator of gauge transformations:$$
\mathcal{C}_{\mu}=S_{\mu \nu}\left[\frac{p^{\nu}}{p}+\Lambda_{0}{ }^{\nu}\right]
$$

gauge transformations affect position:

$$
\Delta x^{\mu}=\left\{\epsilon^{\alpha} \mathcal{C}_{\alpha}, x^{\mu}\right\} \neq 0
$$

gauge generator $\mathcal{C}_{\mu} \leftrightarrow$ first-class constraint

$$
\Rightarrow \quad \mathcal{C}_{\mu}=0 \quad \Rightarrow \quad\left\{\mathcal{C}_{\mu}, \mathcal{C}_{\nu}\right\}=0
$$

gauge fixing \Rightarrow spin supplementary condition

Spin gauge constraint vs spin supplementary condition

 generator of gauge transformations:$$
\mathcal{C}_{\mu}=S_{\mu \nu}\left[\frac{p^{\nu}}{p}+\Lambda_{0}{ }^{\nu}\right]
$$

gauge transformations affect position:

$$
\Delta x^{\mu}=\left\{\epsilon^{\alpha} \mathcal{C}_{\alpha}, x^{\mu}\right\} \neq 0
$$

gauge generator $\mathcal{C}_{\mu} \leftrightarrow$ first-class constraint

$$
\Rightarrow \quad \mathcal{C}_{\mu}=0 \quad \Rightarrow \quad\left\{\mathcal{C}_{\mu}, \mathcal{C}_{\nu}\right\}=0
$$

gauge fixing \Rightarrow spin supplementary condition

$$
\begin{array}{llr}
\Lambda_{0}^{\mu}=\frac{p^{\mu}}{p} & \Rightarrow S_{\mu \nu} p^{\nu}=0 & \text { Fokker, Tulczyjew, Dixon (covariant) } \\
\Lambda_{0}^{\mu}=\delta_{0}^{\mu} & \Rightarrow S_{\mu \nu}\left(p^{\nu}+p \delta_{0}^{\nu}\right)=0 & \text { Pryce, Newton, Wigner (canonical) } \\
\Lambda_{0}^{\mu}=\frac{2 p^{0} \delta_{0}^{\mu}-p^{\mu}}{p} & \Rightarrow S_{\mu 0}=0 & \text { Pryce, Møller, Corinaldesi, Papapetrou }
\end{array}
$$

Frenkel, Mathisson, Pirani: $S_{\mu \nu} \dot{X}^{\nu}=0$

Action principle and coupling to gravity

ADM-type form, see talk by Gerhard Schäfer

$$
S=\int \underbrace{-p_{\mu} d x^{\mu}-\frac{1}{2} S_{\mu \nu} \Lambda^{A \mu} d \Lambda_{A}^{\nu}}_{p d q \sim \text { canonical form }}-\underbrace{\left[\lambda\left(p^{2}-m^{2}\right)+\chi^{\mu} \mathcal{C}_{\mu}\right]}_{\text {Dirac Hamitonian } H_{D}} d \tau
$$

use gauge invariant variables in $H_{D}\left(\tilde{x}^{\mu}, \tilde{S}_{\mu \nu}, \ldots\right): \quad\left\{C_{\alpha}, \tilde{x}^{\mu}\right\}=0=\left\{C_{\alpha}, \tilde{S}_{\mu \nu}\right\}$
rewrite canonical form in terms of \tilde{x}^{μ} before coupling to gravity:

this action does not lead to the Mathisson-Papapetrou-Dixon equations!
parallel transport worldline to x^{μ}, redefine linear momentum
new action leads to the Mathisson-Papapetrou-Dixon equations
[Vines, Kunst, Steinhoff, Hinderer, PRD 93 (2016) 103008]
see also [Bailey, Israel, Commun. math. Phys. 4265 (1975)]

Action principle and coupling to gravity

ADM-type form, see talk by Gerhard Schäfer

$$
S=\int \underbrace{-p_{\mu} d x^{\mu}-\frac{1}{2} S_{\mu \nu} \Lambda^{A \mu} d \Lambda_{A}^{\nu}}_{p d q \sim \text { canonical form }}-\underbrace{\left[\lambda\left(p^{2}-m^{2}\right)+\chi^{\mu} \mathcal{C}_{\mu}\right]}_{\text {Dirac Hamitonian } H_{D}} d \tau
$$

use gauge invariant variables in $H_{D}\left(\tilde{x}^{\mu}, \tilde{S}_{\mu \nu}, \ldots\right): \quad\left\{\mathcal{C}_{\alpha}, \tilde{x}^{\mu}\right\}=0=\left\{\mathcal{C}_{\alpha}, \tilde{S}_{\mu \nu}\right\}$
rewrite canonical form in terms of \tilde{x}^{μ} before coupling to gravity:

$$
\Rightarrow \quad S=\int d \tau\{-p_{\mu} \frac{D}{d \tau} \underbrace{\left[\tilde{x}^{\mu}-S^{\mu \nu} \frac{p_{\nu}}{p^{2}}\right]}_{x^{\mu}}-\frac{1}{2} S_{\mu \nu} \underbrace{\Lambda^{A \mu} \frac{D \Lambda_{A}{ }^{\nu}}{d \tau}}_{\Omega^{\mu \nu}}-H_{D}\}
$$

this action does not lead to the Mathisson-Papapetrou-Dixon equations!
parallel transport worldline to x^{μ}, redefine linear momentum
new action leads to the Mathisson-Papapetrou-Dixon equations
[Vines, Kunst, Steinhoff, Hinderer, PRD 93 (2016) 103008]
see also [Bailey, Israel, Commun. math. Phys. 4265 (1975)]

Action principle and coupling to gravity

ADM-type form, see talk by Gerhard Schäfer

$$
S=\int \underbrace{-p_{\mu} d x^{\mu}-\frac{1}{2} S_{\mu \nu} \Lambda^{A \mu} d \Lambda_{A}^{\nu}}_{p d q \sim \text { canonical form }}-\underbrace{\left[\lambda\left(p^{2}-m^{2}\right)+\chi^{\mu} \mathcal{C}_{\mu}\right]}_{\text {Dirac Hamitonian } H_{D}} d \tau
$$

use gauge invariant variables in $H_{D}\left(\tilde{x}^{\mu}, \tilde{S}_{\mu \nu}, \ldots\right): \quad\left\{\mathcal{C}_{\alpha}, \tilde{x}^{\mu}\right\}=0=\left\{\mathcal{C}_{\alpha}, \tilde{S}_{\mu \nu}\right\}$
rewrite canonical form in terms of \tilde{x}^{μ} before coupling to gravity:

$$
\Rightarrow \quad S=\int d \tau\{-p_{\mu} \frac{D}{d \tau} \underbrace{\left[\tilde{x}^{\mu}-S^{\mu \nu} \frac{p_{\nu}}{p^{2}}\right]}_{x^{\mu}}-\frac{1}{2} S_{\mu \nu} \underbrace{\Lambda^{A \mu} \frac{D \Lambda_{A}{ }^{\nu}}{d \tau}}_{\Omega^{\mu \nu}}-H_{D}\}
$$

this action does not lead to the Mathisson-Papapetrou-Dixon equations!
parallel transport worldline to x^{μ}, redefine linear momentum
\rightarrow new action leads to the Mathisson-Papapetrou-Dixon equations
[Vines, Kunst, Steinhoff, Hinderer, PRD 93 (2016) 103008]
see also [Bailey, Israel, Commun. math. Phys. 4265 (1975)]

Equations of motion

Equations of motion:

$$
\frac{D p_{\mu}}{d \tau}=0
$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974): (see talk by Justin Vines)
momentum p_{μ}
spin / dipole S
cuadrupole J!

Equations of motion

Equations of motion:

$$
\begin{array}{r}
\frac{D p_{\mu}}{d \tau}=0-\frac{1}{2} R_{\mu \rho \beta \alpha} u^{\rho} S^{\beta \alpha} \\
\frac{D S^{\mu \nu}}{d \tau}=2 p^{[\mu} u^{\nu]}
\end{array}
$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951):
- Dixon (~1974): (see talk by Justin Vines)

Traditional approach:
 That is, EOM for p_{μ} and $S^{\mu \nu}$ follow from generic principles!
 Action approach: assume generic covariant action
 Simple, but more restrictive. Still the resulting EOM have the same form!

Equations of motion

Equations of motion:

$$
\begin{array}{r}
\frac{D p_{\mu}}{d \tau}=0-\frac{1}{2} R_{\mu \rho \beta \alpha} u^{\rho} S^{\beta \alpha}-\frac{1}{6} \nabla_{\mu} R_{\nu \rho \beta \alpha} J^{\nu \rho \beta \alpha}-\frac{1}{2} \nabla_{\mu} F_{\alpha \beta} D^{\alpha \beta}+\ldots \\
\frac{D S^{\mu \nu}}{d \tau}=2 p^{[\mu} u^{\nu]}+\frac{4}{3} R^{[\mu}{ }_{\rho \alpha \beta} J^{\nu] \rho \alpha \beta}+2 D^{\alpha[\mu} F^{\nu]}{ }_{\alpha}+\ldots \\
J^{\mu \nu \alpha \beta} \propto \frac{\partial H_{D}}{\partial R_{\mu \nu \alpha \beta}}, \quad D^{\mu \nu} \propto \frac{\partial H_{D}}{\partial F_{\mu \nu}}
\end{array}
$$

- Geodesic equation:
- Mathisson (1937), Papapetrou (1951): spin / dipole $S^{\mu \nu}$
- Dixon (~1974): (see talk by Justin Vines) quadrupole $J^{\mu \nu \alpha \beta}, \ldots$

Traditional approach: $\quad T^{\mu \nu}{ }_{i \nu}=0 \rightsquigarrow \mathrm{EOM}$ That is, EOM for p_{μ} and $S^{\mu \nu}$ follow from generic principles!

Equations of motion

Equations of motion:

$$
\begin{array}{r}
\frac{D p_{\mu}}{d \tau}=0-\frac{1}{2} R_{\mu \rho \beta \alpha} u^{\rho} S^{\beta \alpha}-\frac{1}{6} \nabla_{\mu} R_{\nu \rho \beta \alpha} J^{\nu \rho \beta \alpha}-\frac{1}{2} \nabla_{\mu} F_{\alpha \beta} D^{\alpha \beta}+\ldots \\
\frac{D S^{\mu \nu}}{d \tau}=2 p^{[\mu} u^{\nu]}+\frac{4}{3} R^{[\mu}{ }_{\rho \alpha \beta} J^{\nu] \rho \alpha \beta}+2 D^{\alpha[\mu} F^{\nu]}{ }_{\alpha}+\ldots \\
J^{\mu \nu \alpha \beta} \propto \frac{\partial H_{D}}{\partial R_{\mu \nu \alpha \beta}}, \quad D^{\mu \nu} \propto \frac{\partial H_{D}}{\partial F_{\mu \nu}}
\end{array}
$$

- Geodesic equation:
momentum p_{μ}
- Mathisson (1937), Papapetrou (1951): \quad spin / dipole $S^{\mu \nu}$
- Dixon (~ 1974): (see talk by Justin Vines) quadrupole $J^{\mu \nu \alpha \beta}, \ldots$

Traditional approach: $\quad T^{\mu \nu}{ }_{; \nu}=0 \rightsquigarrow$ EOM
That is, EOM for p_{μ} and $S^{\mu \nu}$ follow from generic principles!
Action approach: assume generic covariant action Simple, but more restrictive. Still the resulting EOM have the same form!

Outline

(1) Introduction

2 Action principle for spinning bodies/particles

(3) Phase spaces

4 Spin interaction: post-Newtonian
(5) Tidal spin

Canonical structure

$$
S=\int \underbrace{-p_{\mu} d x^{\mu}-\frac{1}{2} S_{\mu \nu} \Lambda^{A \mu} D \Lambda_{A}^{\nu}}_{B=\text { canonical form }}-H_{D} d \tau
$$

Equations of motion for phase space coordinates $q=\left(p_{\mu}, x^{\mu}, S_{\mu \nu}, \Lambda_{A}{ }^{\mu}\right)$:

$$
\dot{q}^{n}=M^{n m} \frac{\partial H_{D}}{\partial q^{m}}=\left\{H_{D}, q^{n}\right\}
$$

where $\quad M=(d B)^{-1}, \quad\{X, Y\}=M^{m n} \frac{\partial X}{\partial q^{n}} \frac{\partial Y}{\partial q^{m}}$

Tradeoff: simple M vs. simple Hamiltonian vs. \#DOF

4D phase space

$$
S=\int \underbrace{-p_{\mu} d x^{\mu}-\frac{1}{2} S_{\mu \nu} \Lambda^{A \mu} D \Lambda_{A}^{\nu}}_{B=\text { canonical form }}-H_{D} d \tau
$$

Use spin in local Lorentz frame, $e_{a \mu} e_{b}{ }^{\mu}=\eta_{a b}$:

$$
B=B_{n}(q) d q^{n}=-\underbrace{\left(p_{\mu}+\frac{1}{2} \omega_{\mu}^{a b} S_{a b}\right)}_{P_{\mu}} d x^{\mu}-\frac{1}{2} S_{a b} \Lambda^{A a} d \Lambda_{A}^{b}
$$

Poisson brackets: (all other zero)

$$
\left\{x^{\mu}, P_{\nu}\right\}=\delta_{\nu}^{\mu}, \quad\left\{\Lambda_{A}^{c}, S_{a b}\right\}=2 \Lambda_{A}^{d} \eta_{d[a} \delta_{b]}^{c}, \quad\left\{S_{a b}, S_{c d}\right\}=S_{a c} \eta_{b d}-\ldots
$$

What to do with λ, ξ^{μ} in H_{D} ?
E.g. gauge fixing $\lambda=$ const, $\xi^{\mu}=0 \quad \Rightarrow \quad H_{D} \propto g^{\mu \nu} p_{\mu} p_{\nu}$

3D Phase spaces

$$
S=\int-\underbrace{\left(p_{\mu}+\frac{1}{2} \omega_{\mu}^{a b} S_{a b}\right)}_{P_{\mu}} d x^{\mu}-\frac{1}{2} S_{a b} \Lambda^{A a} d \Lambda_{A}^{b}-H_{D} d \tau
$$

make gauge choices $\tau=t=x^{0}$ and $\Lambda_{0}{ }^{a}=\delta_{0}^{a} \Rightarrow \Lambda_{A}{ }^{0}=\delta_{A}^{0}$ and solve constaints ($H_{D}=0$):

$$
S=\int \underbrace{-P_{i} d x^{i}-\frac{1}{2} S_{i j} \Lambda^{k i} d \Lambda_{k}^{j}}_{\text {new canonical form }}-\left(H=P_{0}\right) d t
$$

Here i, j, k, ℓ run through $1,2,3 . H \equiv P_{0}$ from $g^{\mu \nu} p_{\mu} p_{\nu}=m^{2}$.
Poisson brackets: (all other zero)

$$
\left\{x^{i}, P_{j}\right\}=\delta_{j}^{i}, \quad\left\{\Lambda_{\ell}^{k}, S_{i j}\right\}=-2 \Lambda_{\ell}^{m} \delta_{m[i} \delta_{j]}^{k}, \quad\left\{S_{i j}, S_{k \ell}\right\}=-S_{i k} \delta_{j \ell}-\ldots
$$

Literature

Hanson, Regge, Ann. Phys. 87 (1974) 498-566
Khriplovich, Sov. Phys. JETP 69 (1989) 217
Yee, Bander, PRD 48 (1993) 2797-2799
Porto, PRD 73 (2006) 104031
Porto, PRD 78 (2008) 044012; 81 (2010) 029904
JS, Schäfer, EPL 87 (2009) 50004
JS, arXiv:1412.3251
Levi, JS, JHEP 1509 (2015) 219
JS, arXiv:1501.04951
d'Ambrosi, Kumar, van Holten, Phys. Lett. B743 (2015) 478-483
Vines, Kunst, JS, Hinderer, PRD 93 (2016) 103008
Witzany, JS, Lukes-Gerakopoulos, CQG 36 (2019) 075003

Outline

(9) Introduction

(2) Action principle for spinning bodies/particles
(3) Phase spaces

4 Spin interaction: post-Newtonian
(5) Tidal spin

Approaches to the relativistic binary problem

image credit: A. Buonanno, B.S. Sathyaprakash

Spin and Gravitomagnetism

Interaction with gravito-magnetic field $A_{i} \approx-g_{i 0}$:

$$
\frac{1}{2} S_{\mu \nu} \Lambda_{A}^{\mu} D \Lambda^{A \nu} \rightsquigarrow \frac{1}{2} S^{i j} \partial_{i} A_{j}
$$

\rightarrow universal for all objects!

Spin and Gravitomagnetism

Interaction with gravito-magnetic field $A_{i} \approx-g_{i 0}$:

$$
\frac{1}{2} S_{\mu \nu} \Lambda_{A}{ }^{\mu} D \Lambda^{A \nu} \rightsquigarrow \frac{1}{2} S^{i j} \partial_{i} A_{j}
$$

\rightarrow universal for all objects!

Spin and Gravitomagnetism

Interaction with gravito-magnetic field $A_{i} \approx-g_{i 0}$:

$$
\frac{1}{2} S_{\mu \nu} \Lambda_{A}^{\mu} D \Lambda^{A \nu} \rightsquigarrow \frac{1}{2} S^{i j} \partial_{i} A_{j}
$$

\rightarrow universal for all objects!

$L_{S_{1} S_{2}}=\frac{1}{2} S_{1}^{k i}\left\langle\partial_{k} A_{i} \partial_{\ell} A_{j}\right\rangle \frac{1}{2} S_{2}^{\ell j} \quad$ [ignoring time integrals and $\delta\left(t_{1}-t_{2}\right)$ factors]

Spin and Gravitomagnetism

Interaction with gravito-magnetic field $A_{i} \approx-g_{i 0}$:

$$
\frac{1}{2} S_{\mu \nu} \Lambda_{A}^{\mu} D \Lambda^{A \nu} \rightsquigarrow \frac{1}{2} S^{i j} \partial_{i} A_{j}
$$

\rightarrow universal for all objects!

$$
\begin{aligned}
S_{1} & \left\lvert\, \begin{array}{ll}
A_{i} & A_{j} \\
-\cdots-\cdots & S_{2} \quad \text { see talk by Michele Levi } \\
L_{S_{1} S_{2}} & =\frac{1}{2} S_{1}^{k i}\left\langle\partial_{k} A_{i} \partial_{\ell} A_{j}\right\rangle \frac{1}{2} S_{2}^{\ell j} \quad \text { [ignoring time integrals and } \delta\left(t_{1}-t_{2}\right) \text { factors] } \\
& =\frac{1}{2} S_{1}^{k i} \frac{1}{2} S_{2}^{\ell j} \delta_{i j}(-16 \pi G) \frac{\partial}{\partial x_{1}^{k} \partial x_{2}^{\ell}} \int \frac{d k}{(2 \pi)^{3}} \frac{e^{i \vec{k}\left(x_{1}-x_{2}\right)}}{\vec{k}^{2}} \\
& \left.=-G S_{1}^{k i} S_{2}^{\ell} \frac{\partial}{\partial x_{1}^{k} \partial x_{2}^{l}}\left(\frac{1}{r_{12}}\right) \quad \text { (where } r_{12}=\left|\vec{x}_{1}-\vec{x}_{2}\right|\right)
\end{array}\right.
\end{aligned}
$$

Spin and Gravitomagnetism

Interaction with gravito-magnetic field $A_{i} \approx-g_{i 0}$:

$$
\frac{1}{2} S_{\mu \nu} \Lambda_{A}^{\mu} D \Lambda^{A \nu} \rightsquigarrow \frac{1}{2} S^{i j} \partial_{i} A_{j}
$$

\rightarrow universal for all objects!

$$
\begin{aligned}
S_{1} & \left\lvert\, \begin{array}{ll}
A_{i} & A_{j} \\
-\cdots-\cdots & S_{2} \quad \text { see talk by Michele Levi } \\
L_{S_{1} S_{2}} & =\frac{1}{2} S_{1}^{k i}\left\langle\partial_{k} A_{i} \partial_{\ell} A_{j}\right\rangle \frac{1}{2} S_{2}^{\ell j} \quad \text { [ignoring time integrals and } \delta\left(t_{1}-t_{2}\right) \text { factors] } \\
& =\frac{1}{2} S_{1}^{k i} \frac{1}{2} S_{2}^{\ell j} \delta_{i j}(-16 \pi G) \frac{\partial}{\partial x_{1}^{k} \partial x_{2}^{\ell}} \int \frac{d k}{(2 \pi)^{3}} \frac{e^{i \vec{k}\left(\vec{x}_{1}-\vec{x}_{2}\right)}}{\vec{k}^{2}} \\
& \left.=-G S_{1}^{k i} S_{2}^{\ell i} \frac{\partial}{\partial x_{1}^{k} \partial x_{2}^{\ell}}\left(\frac{1}{r_{12}}\right) \quad \text { (where } r_{12}=\left|\vec{x}_{1}-\vec{x}_{2}\right|\right)
\end{array}\right.
\end{aligned}
$$

Frame dragging

angular momentum/spin leads to

- gravito-magnetic effects
- dragging of reference frames

Orbital angular momentum $L_{i j}=2 x_{[i} p_{j]}$ generates rotations of the orbit

$$
\left\{x^{k}, L_{i j}\right\}=-x^{i} \delta_{j k}+x^{j} \delta_{i k}, \quad\left\{p_{k}, L_{i j}\right\}=-p_{i} \delta_{j k}+p_{j} \delta_{i k}
$$

Spin generates rotations of the body-fixed frame $\Lambda_{\ell}{ }^{k}$:

$$
\left\{\Lambda_{\ell k}, S_{i j}\right\}=-\Lambda_{\ell i} \delta_{j k}+\Lambda_{\ell j} \delta_{i k}
$$

\Rightarrow spin interactions in the Hamiltonian rotate the body-fixed frame over time!

Results for the post-Newtonian potential

conservative part of the motion of the binary
post-Newtonian (PN) approximation: expansion around $\frac{1}{c} \rightarrow 0$ (Newton)

order	$\begin{aligned} & C^{0} \\ & \mathrm{~N} \end{aligned}$	C^{-1}	$\begin{gathered} c^{-2} \\ 1 \mathrm{PN} \end{gathered}$	c^{-3}	$\begin{gathered} C^{-4} \\ 2 P N \end{gathered}$	C^{-5}	$\begin{gathered} C^{-6} \\ 3 P N \end{gathered}$	c^{-7}	$\begin{gathered} c^{-8} \\ 4 \mathrm{PN} \end{gathered}$
non spin	\checkmark		\checkmark		\checkmark		\checkmark		\checkmark
spin-orbit				\checkmark		\checkmark		\checkmark	
Spin ${ }^{2}$					\checkmark		\checkmark		\checkmark
Spin ${ }^{3}$								\checkmark	
Spin ${ }^{4}$									\checkmark

Work by many people ("just" for the spin sector): Barker, Blanchet, Bohé, Buonanno, O'Connell, Damour, D'Eath, Faye, Hartle, Hartung, Hergt, Jaranowski, Marsat, Levi, Ohashi, Owen, Perrodin, Poisson, Porter, Porto, Rothstein, Schäfer, Steinhoff, Tagoshi, Thorne, Tulczyjew, Vaidya

Code for the spin part using EFT: M. Levi, JS, CQG 34 (2017), 244001

Outline

(1) Introduction

(2) Action principle for spinning bodies/particles
(3) Phase spaces

4 Spin interaction: post-Newtonian
(5) Tidal spin

Dynamic tides and tidal spin

[JS, T. Hinderer, A. Buonanno, A. Taracchini, PRD 94104028 (2016)]
dynamical tides:
orbital motion can excite oscillation modes
gravitomagnetism:
\rightarrow frame dragging effect
~ Zeeman effect
also: redshift effect

frame of the neutron star is dragged in the direction of the orbital motion

Dynamic tides and tidal spin

$$
S=\int \underbrace{-p_{\mu} d x^{\mu}-P_{\mu \nu} D Q^{\mu \nu}}_{B}-\underbrace{\left\{\lambda\left[p^{2}-\left(m+H_{t}\right)^{2}\right]+\ldots\right\}}_{H_{D}} d \tau
$$

with the tidal (harmonic oscillator) Hamiltonian:

$$
H_{t}=\frac{1}{2 m_{Q}} P_{\mu \nu} P^{\mu \nu}+\frac{m_{Q} \omega_{0}^{2}}{2} Q_{\mu \nu} Q^{\mu \nu}+\frac{1}{2} E_{\mu \nu} Q^{\mu \nu}=\ldots
$$

The tidal spin $S_{Q}^{\mu \nu}=4 Q^{\rho[\mu} P^{\nu]}{ }_{\rho}$ shows up in the canonical form:

$$
B=-\underbrace{\left(p_{\mu}+\frac{1}{2} \omega_{\mu a b} S_{Q}^{a b}\right)}_{P_{\mu}} d x^{\mu}-P_{a b} d Q^{a b}
$$

Equations of motion

Vary the action:

$$
\begin{gathered}
\frac{D p_{\mu}}{d \tau}=\frac{1}{2} S_{Q}^{\alpha \beta} R_{\alpha \beta \rho \mu} \dot{x}^{\rho}-\frac{1}{6} \nabla_{\mu} R_{\alpha \rho \beta \sigma}\left[J_{Q}^{\alpha \rho \beta \sigma}=-\frac{3}{2 m^{3} \lambda} p^{[\alpha} Q^{\rho][\beta} p^{\sigma]}\right] \\
\frac{1}{2 \lambda m} \frac{D P_{\mu \nu}}{d \tau}=-m_{Q} \omega_{0}^{2} Q_{\mu \nu}-\frac{1}{2} E_{\mu \nu} \\
\frac{1}{2 \lambda m} \frac{D Q^{\mu \nu}}{d \tau}=\frac{P^{\mu \nu}}{m_{Q}}
\end{gathered}
$$

Spin EOM is not fundamental, the EOMs for $Q^{\mu \nu}$ and $P_{\mu \nu}$ are!

Using $S_{Q}^{\mu \nu}=4 Q^{\rho[\mu} P^{\nu]}{ }_{\rho}$:

Agreement with the Mathisson-Papapetrou-Dixon equations of motion!

Equations of motion

Vary the action:

$$
\begin{gathered}
\frac{D p_{\mu}}{d \tau}=\frac{1}{2} S_{Q}^{\alpha \beta} R_{\alpha \beta \rho \mu} \dot{x}^{\rho}-\frac{1}{6} \nabla_{\mu} R_{\alpha \rho \beta \sigma}\left[J_{Q}^{\alpha \rho \beta \sigma}=-\frac{3}{2 m^{3} \lambda} p^{[\alpha} Q^{\rho][\beta} p^{\sigma]}\right] \\
\frac{1}{2 \lambda m} \frac{D P_{\mu \nu}}{d \tau}=-m_{Q} \omega_{0}^{2} Q_{\mu \nu}-\frac{1}{2} E_{\mu \nu} \\
\frac{1}{2 \lambda m} \frac{D Q^{\mu \nu}}{d \tau}=\frac{P^{\mu \nu}}{m_{Q}}
\end{gathered}
$$

Spin EOM is not fundamental, the EOMs for $Q^{\mu \nu}$ and $P_{\mu \nu}$ are!
Using $S_{Q}^{\mu \nu}=4 Q^{\rho[\mu} P^{\nu]}{ }_{\rho}$:

$$
\frac{D S_{Q}^{\mu \nu}}{d \tau}=2 p^{[\mu} \dot{x}^{\nu]}+\frac{4}{3} R_{\alpha \beta \rho}{ }^{[\mu} J_{Q}^{\nu] \rho \beta \alpha}
$$

Agreement with the Mathisson-Papapetrou-Dixon equations of motion!

Poisson brackets

$$
B=-\underbrace{\left(p_{\mu}+\frac{1}{2} \omega_{\mu a b} S_{Q}^{a b}\right)}_{P_{\mu}} d x^{\mu}-P_{a b} d Q^{a b}
$$

4D Poisson brackets:

$$
\left\{x^{\mu}, P_{\nu}\right\}=\delta_{\nu}^{\mu}, \quad\left\{Q^{a b}, P_{c d}\right\}=2 \eta_{c}^{(a} \eta_{d}^{b)}
$$

Derived brackets:

$$
\begin{gathered}
\left\{S_{Q}^{a b}, S_{Q}^{c d}\right\}=\eta^{a c} S_{Q}^{b d}-\ldots \\
\left\{Q^{a b}, S_{Q}^{c d}\right\}=\eta^{a d} Q^{c b}-\ldots, \quad\left\{P^{a b}, S_{Q}^{c d}\right\}=\eta^{a d} P^{c b}-\ldots
\end{gathered}
$$

3D Poisson brackets similar.
The tidal spin $S_{Q}^{i j}$ generates rotations of $Q^{i j}$ and $P_{i j} \quad \rightarrow \quad$ frame dragging

Conclusions

Spin presents its own challenges:

- definition of center
- supplementary conditions

ADM worldline action with spin-gauge symmetry very useful:

- connecting various incarnations of action principles and canonical formalisms
- close connection to quantum fields

$$
\text { e.g., } \lambda\left(g^{\mu \nu} p_{\mu} p_{\nu}+m^{2}\right) \text { vs. } \sqrt{-g}\left(g^{\mu \nu} \partial_{\nu} \phi \partial_{\nu} \phi+m^{2} \phi^{2}\right)
$$

- useful for double-copy constructions, see talk by Jan Plefka

Many things omitted and to do... eikonal limit of the action with spinning fields, spinor helicity, twistor actions. . .

Thank you!

Conclusions

Spin presents its own challenges:

- definition of center
- supplementary conditions

ADM worldline action with spin-gauge symmetry very useful:

- connecting various incarnations of action principles and canonical formalisms
- close connection to quantum fields

$$
\text { e.g., } \lambda\left(g^{\mu \nu} p_{\mu} p_{\nu}+m^{2}\right) \text { vs. } \sqrt{-g}\left(g^{\mu \nu} \partial_{\nu} \phi \partial_{\nu} \phi+m^{2} \phi^{2}\right)
$$

- useful for double-copy constructions, see talk by Jan Plefka

Many things omitted and to do... eikonal limit of the action with spinning fields, spinor helicity, twistor actions. . .

Thank you!

[^0]: e.g., massive elementary particles are characterized by: $m, S=0, \frac{1}{2}, 1$,

