# Basics of feedback control systems.

**MT ARD ST3 Annual Meeting** 

Oct. 16 - Oct. 18 2019

Annika Eichler, Sven Pfeiffer GSI, Darmstadt, 17.10.2019





## Introduction

#### **Goals for todays tutorial**

- Tutorial goal
  - Finish in 45-60 minutes
  - Introduce system descriptions in Laplacian domain
  - Introduce classical PID feedback control for single input single output systems

#### What this tutorial will cover

• Basic understanding of system dynamics and basic feedback setup

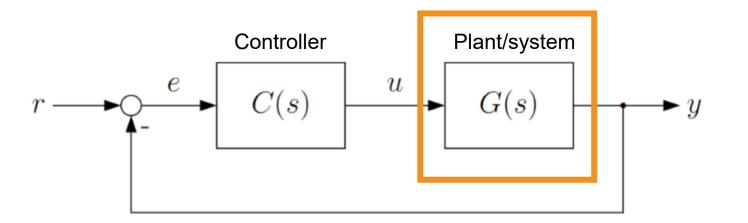
#### What this tutorial will NOT cover

- Detailed theory and implementations
- Multiple input multiple output systems
- Non-linear systems
- . . .

## **Outlook**

## **Closed loop system analysis**

- 1. System description and modelling
- 2. Controller design/analysis
- 3. PID controller
- 4. Outlook



#### Systems

- C(s) ... feedback controller
- G(s) ... plant / system

#### **Basic loop signals**

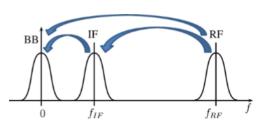
- r ... reference or set-point
- y ... output signal
- e = r-y ... error between reference and output
- u ... control signal

#### In addition and not shown yet

- Disturbance to system/measurement
- Noise to measurement
- ...

Low-pass with time delay

- Main focus on systems based on low-pass characteristic with time delay
- Why?
  - Good approximation for many systems
  - Valid for most of the RF structures which are downconverted into base-band



What differs for the systems are the bandwidth and delay



- Superconducting TESLA type cavities
  - 10 500 Hz half-bandwidth
- Piezo regulation (Laser, Cavity, ...)
  - ~ 10 kHz half-bandwidth



- Normal-conducting copper cavities
  - Standing/travelling wave
  - 50 kHz 1 MHz half-bandwidth
  - E.g. RF-gun, BACCA, ... ARES TWS1/2 structure



#### **Example: Low-pass without time-delay**

$$Ri(t) + y(t) = u(t) ; \quad C\frac{dy(t)}{dt} = i(t)$$
$$RC\frac{dy(t)}{dt} + y(t) = u(t)$$

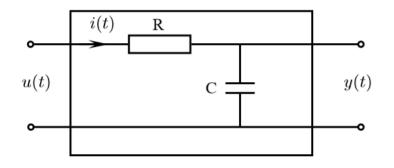
Assume  $u(t) = U_0$  and split in homogeneous and non homogeneous case. Approach homogeneous case ( $y(t) = e^{\lambda t}$ ) or solve it directly.

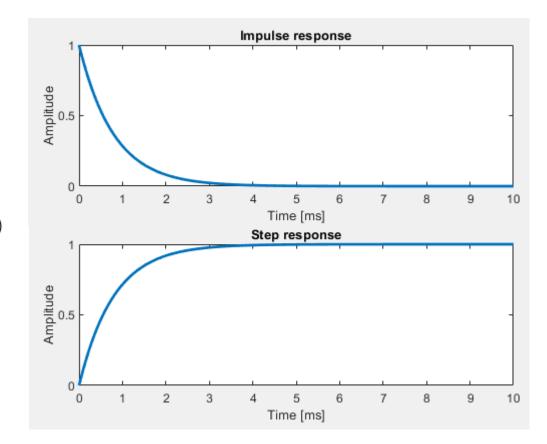
$$RC\lambda e^{\lambda t} + e^{\lambda t} = 0$$
;  $\lambda = -\frac{1}{RC}$  Assume u(t) = 0  
 $y(t)_{hom} = Ke^{-\frac{1}{RC}t}$  Impulse response g(t)

$$y(t) = y(t)_{hom} + y(t)_{nonhom} = U_0(1 - e^{-\frac{1}{RC}t})$$

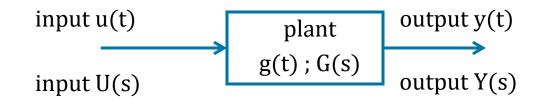
by initial conditions where  $u(t) \neq 0$ .

The impulse response is needed for system analysis. The output signal y(t) for any input signal u(t) is computed by the convolution of  $g(t)^*u(t)$ .





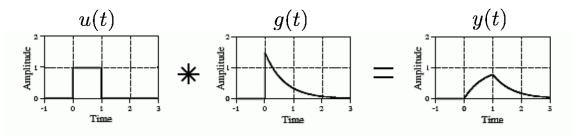
## Time and frequency domain



### **Time domain**

 Convolution of impulse response g(t) and input u(t)

$$y(t) = g(t) \ast u(t)$$



• Makes system analysis very complicated

### **Frequency domain**

• Laplace transformation widely used in system analysis

$$s := \sigma + j\omega$$

• Multiplication of impulse response G(s) and input U(s)

 $Y(s) = G(s) \cdot U(s)$ 

• System analysis much easier

#### **Transformation into Frequency Domain**

Fourier transformation

$$F(f) = \int_{t=-\infty}^{\infty} f(t) \cdot e^{-i2\pi ft} dt$$

• Defined for all t

Laplace transformation  $s := \sigma + j\omega$ 

• Defined for all  $t \ge 0$  (causal system)

 $F(s) = \int_{t=0}^{\infty} e^{-st} f(t) \, dt$ 

for completeness

 $f(t) = 0, \forall t < 0$ 

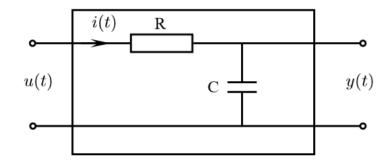
Inverse Laplace transformation

$$f(t) = \mathcal{L}^{-1}\{F(s)\} = \frac{1}{2\pi j} \int_{s=\alpha-j\infty}^{\alpha+j\infty} F(s) \cdot e^{st} \, ds$$

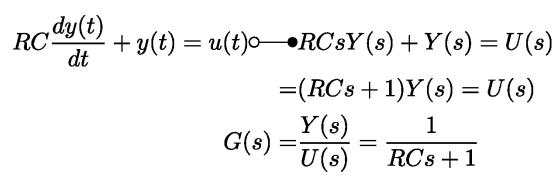
**Example: Low-pass filter** 

#### Find transformation as table in literature

| No.           | Time Domain $f(t)$                                                           | Frequency Domain $F(s)$                                      |
|---------------|------------------------------------------------------------------------------|--------------------------------------------------------------|
| 1             | Impulse response $\delta(t)$                                                 | 1                                                            |
| 2             | Unit step $\sigma(t)$                                                        | $\frac{1}{s}$                                                |
| 3             | t                                                                            | $\begin{bmatrix} \frac{1}{s} \\ \frac{1}{s^2} \end{bmatrix}$ |
| $\frac{4}{5}$ | $t^n$                                                                        | $\frac{s_{n!}}{s^{n+1}}$                                     |
| 5             | $\frac{df}{dt} = \dot{f}(t)$                                                 | $sF(s) - f(0) \leftarrow$                                    |
| 6             | $\frac{\frac{df}{dt}}{\dot{f}(t)} = \dot{f}(t)$                              | $s^2 F(s) - sf(0) - f'(0)$                                   |
| 7             | $ \begin{array}{c} \int_{0}^{t} f(t) \\ e^{at} \\ t^{n} e^{at} \end{array} $ | $\frac{1}{s}F(s)$                                            |
| 8             | $e^{at}$                                                                     | $\frac{1}{s-a}; s > a$                                       |
| 9             | $t^n e^{at}$                                                                 | $\frac{\frac{s}{1}}{\frac{s-a}{(s-a)n+1}}; s > a$            |
| 10            | $\sin at$                                                                    | $\frac{a}{s^2 + a^2}; s > 0$                                 |
| 11            | $\cos at$                                                                    | $\frac{a}{s^2 + a^2}; s > 0$ $\frac{s}{s^2 + a^2}; s > 0$    |
| • • •         |                                                                              |                                                              |



#### **Previous example:**



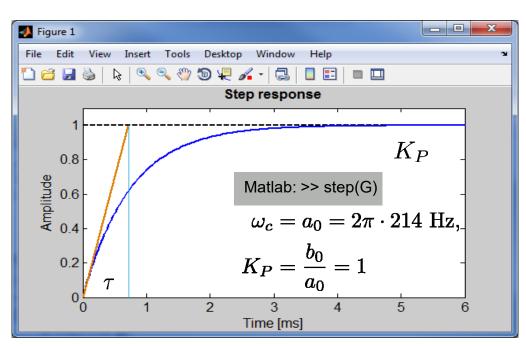
Initial conditions are zero!

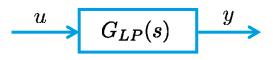
#### **Example: Low-pass filter**

## First order system:

 $G(s) = \frac{b_0}{s+a_0}$ 

Static gain:  $K_P = b_0/a_0$  for  $s \to 0$ Time constant:  $\tau = 1/a_0$ Step response:  $y(t) = K_p(1 - e^{-t/\tau})$ 





#### Laplace transformation properties

**Final value** •

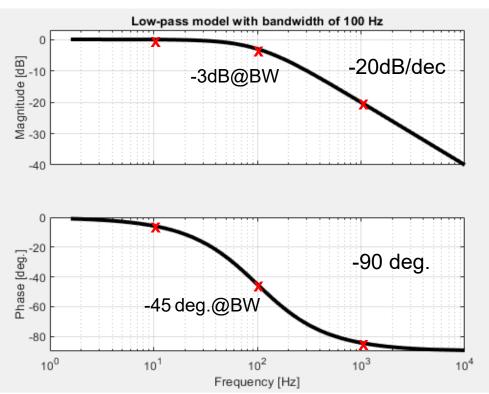
$$\lim_{t \to \infty} x(t) = \lim_{s \to 0} sX(s)$$
• impulse response: 
$$\lim_{s \to 0} sG(s) = \lim_{s \to 0} s\frac{b_0}{s + a_0} \cdot 1 = 0$$
• for unit step: 
$$\lim_{s \to 0} sG(s) \cdot \frac{1}{s} = \frac{b_0}{a_0}$$

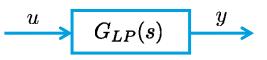
$$\frac{\sqrt{N_0} - \frac{Time Domain f(t)}{Impulse response \delta(t)} - \frac{Frequency Domain F(s)}{\frac{1}{s}}$$
Initial value
$$x(0^+) = \lim_{s \to \infty} sX(s)$$

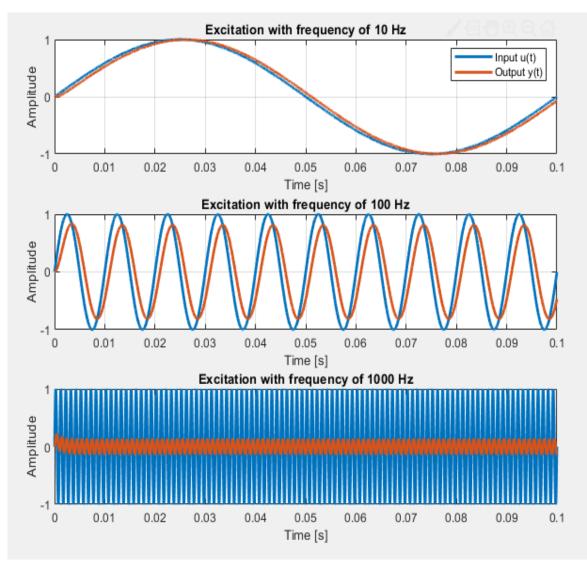
#### Low-pass response in time and frequency

- First order low-pass characteristic (BW 100Hz)
- Sine as input, corresponding output analyzed
- I/O ratio and phase shift is plotted

#### $\rightarrow$ Bode diagram

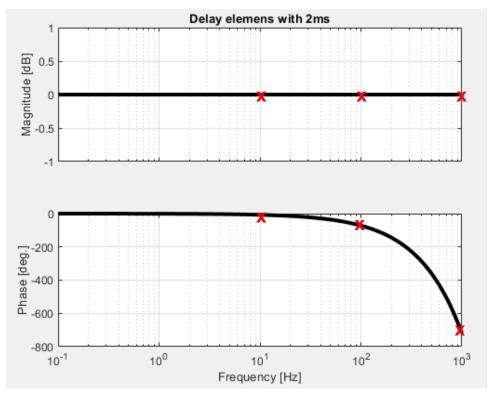




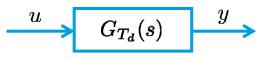


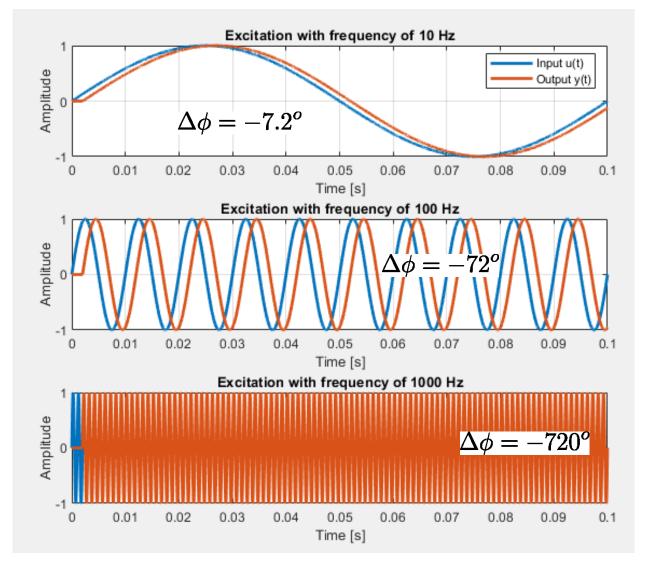
## Time delay response in time and frequency

- Time delay of 2ms
- Sine as input, corresponding output analyzed
- I/O ratio and phase shift is plotted



#### $\rightarrow$ Bode diagram



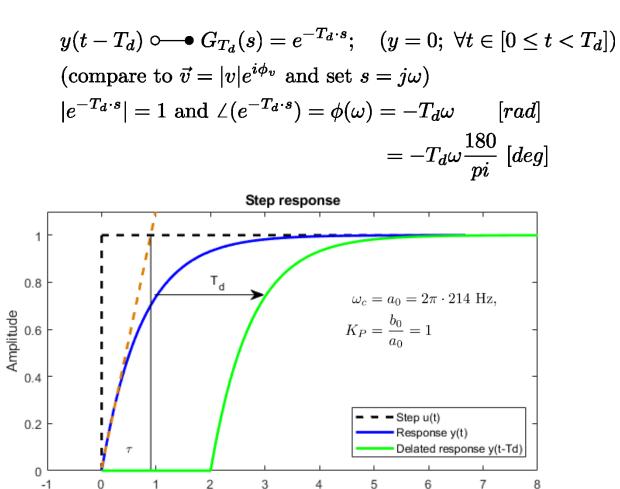


Time delay in time and frequency domain

System with time delay  $T_d$ :

-1

1

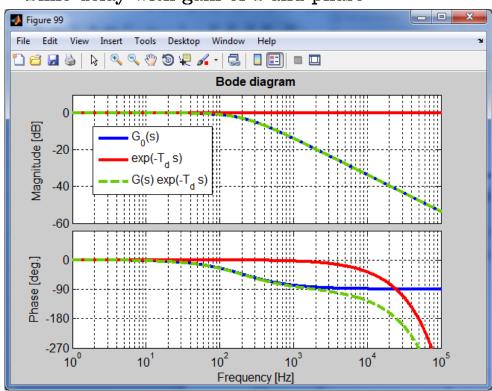


$$u \longrightarrow G_{LP}(s) \longrightarrow G_{T_d}(s) \xrightarrow{y}$$
$$G(s) = G_{T_d}(s) \cdot G_{LP}(s)$$

System with time delay  $T_d$ :

 $G(s) = G_0(s) \cdot e^{-T_d \cdot s}$ 

-  $G_0(s)$  ... time delay-free system - Time delay with gain of 1 and phase

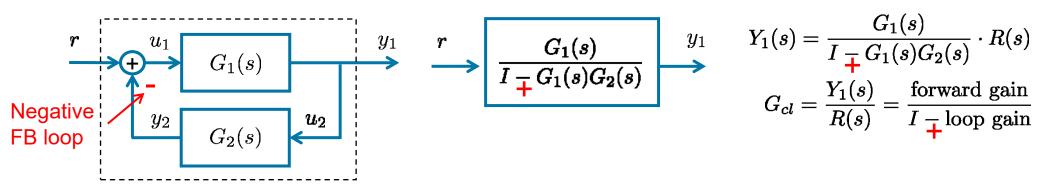


DESY. | Tutorial: Basics of feedback control systems | A.Eichler, S.Pfeiffer | MT ARD ST3 - GSI/FAIR | 17.10.2019

Time [ms]

Serial, parallel and feedback connection of blocks

- Serial connection **Parallel connection**  $u_1$  $u_1$  $y_1 = u_2$  $G_1(s)$  $G_1(s)$  $G_2(s)$  $G_2(s)$  $u_1$  $Y_2(s) = G_1(s) \cdot G_2(s) \cdot U_1(s)$  $G_1(s)G_2(s)$  $u_1$  $y_1$  $G_1(s) + G_2(s)$  $Y_1(s) = (G_1(s) + G_2(s)) \cdot U_1(s)$
- Feedback



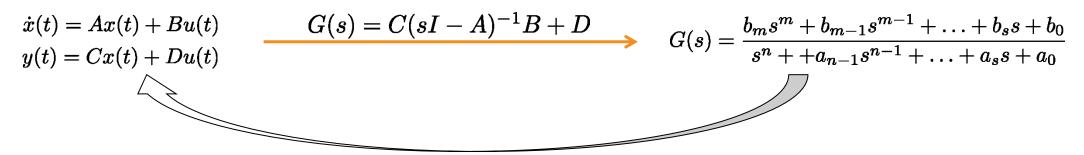
Time vs. frequency domain

#### Time domain

• Differential equation to n first order equations in state space representation

#### **Frequency domain**

Transfer function of n-th order



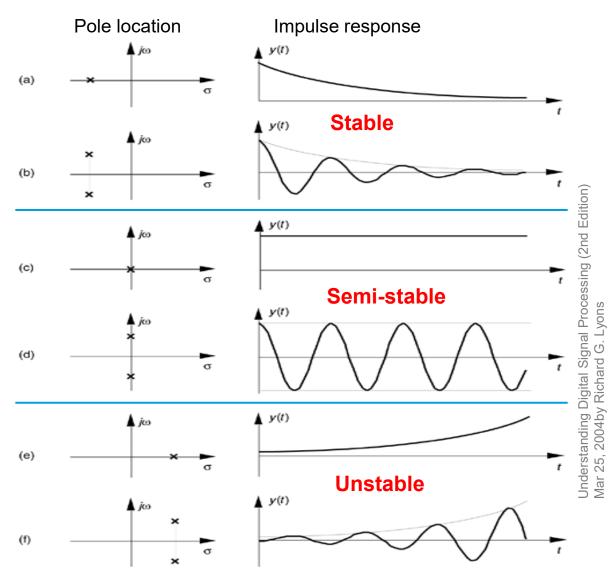
(2) Map the transfer function in frequency domain into special structure for A,B,C,D matrices

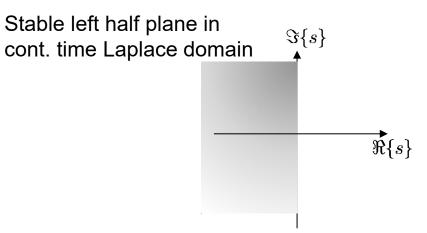
- $\rightarrow$  Keyword from frequency to state space :
- Controllable canonical form
- Observable canonical form

(1) Map TF into time domain as differential equation

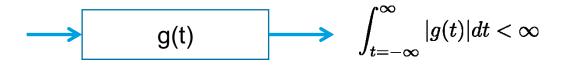
| No | Time domain $f(t)$                             | Frequency domain $F(s)$    |
|----|------------------------------------------------|----------------------------|
| 1  | Unit impulse $\delta(t)$                       | 1                          |
| 2  | Unit step $\sigma(t)$                          | $\frac{1}{s}$              |
| 3  | t                                              | $\frac{s}{s^2}$ .          |
| 4  | $t^n$                                          | $\frac{s^-}{s^{n+1}}$      |
| 5  | $\frac{\mathrm{d}f}{\mathrm{d}t} = \dot{f}(t)$ | sF(s) - f(0)               |
| 6  | $\ddot{f}(t)$                                  | $s^2 F(s) - sf(0) - f'(0)$ |
| 7  | oat                                            | $1 \cdot e > a$            |

#### Stability - Is my system itself stable?





A system is stable if for a given bounded input signal the output signal is bounded and finite (BIBO stable); if not, the system is called unstable

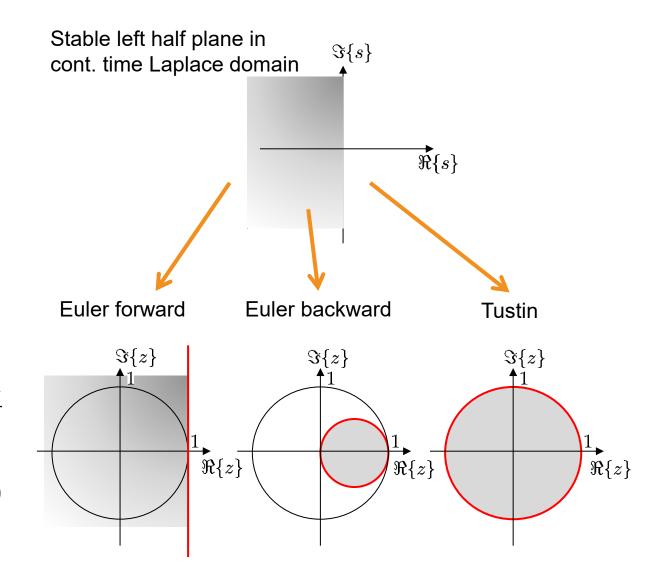


### **Discrete time representation for digital systems**

Translate continuous to discrete time model/controller by finding an approximate showing the same characteristics over the frequency range of interest

- **Pole-zero matching (exact approximation)** •
  - Map pole/zero by  $z_i = e^{s_i T_s}$  with location  $s_i$
  - Find appropriate gain (at critical frequencies  $(s \rightarrow 0)$ )
  - Only for SISO systems
- Numerical integration ٠

  - Euler forward/backward $s \mapsto \frac{z-1}{T_s}; \quad s \mapsto \frac{1-z^{-1}}{T_s}$ Tustin (bilinear transformation) $s \mapsto \frac{2}{T_s} \frac{z-1}{z+1}$
- Hold equivalents (discretization in the time domain) •
  - ZOH, FOH

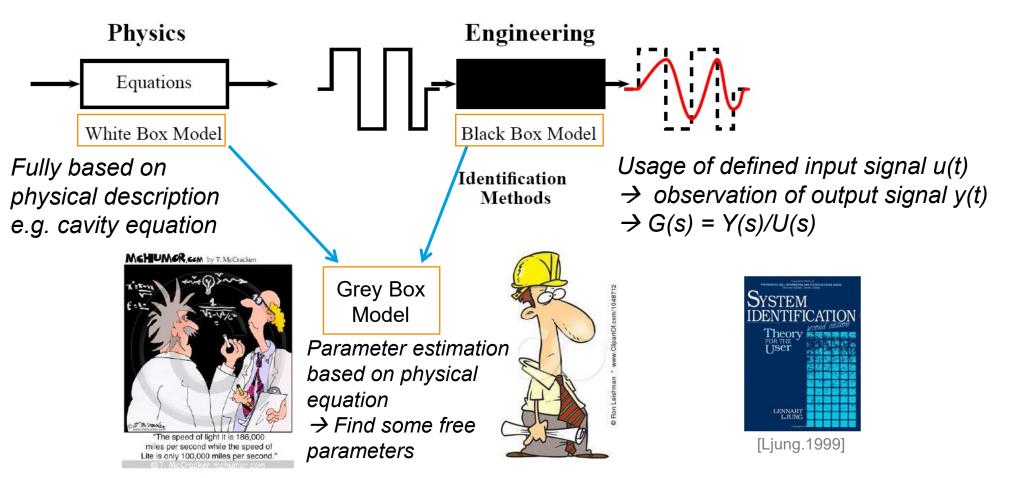


Stability: Poles in RHP  $\rightarrow$  outside unit circle are unstable poles!

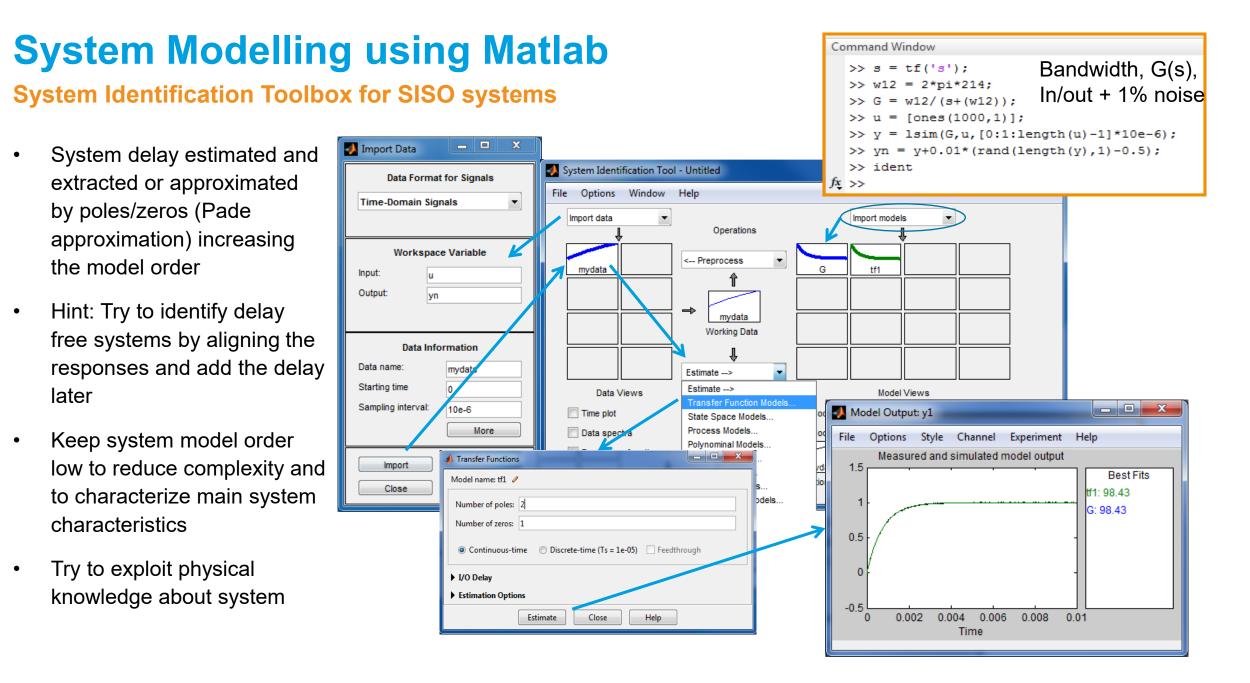
## System Modelling

## **System Modelling**

System identification using special input signals



A system model is a simplified representation or abstraction of the reality. Reality is generally too complex to copy exactly. Much of the complexity is actually irrelevant in problem solving, e.g. controller design.

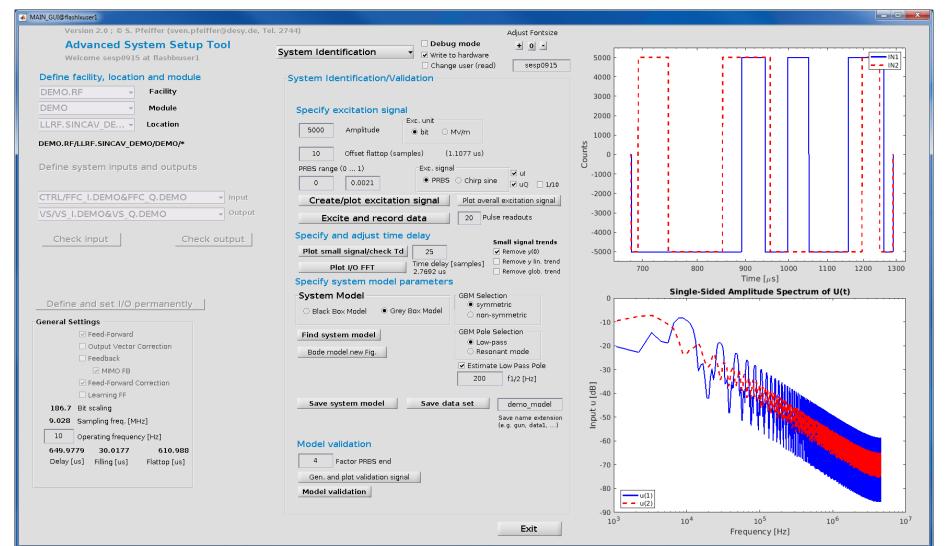


## **System Modelling using Matlab**

## Advanced LLRF System Setup Tool

#### Features:

- Select facility
- Select subsystem
- System identification
  - Delay estimation
  - Grey box
  - Black box
- FB Controller design
- Learning feed-forward
- Smith predictor setup



**DESY.** | Tutorial: Basics of feedback control systems | A.Eichler, S.Pfeiffer | MT ARD ST3 - GSI/FAIR | 17.10.2019

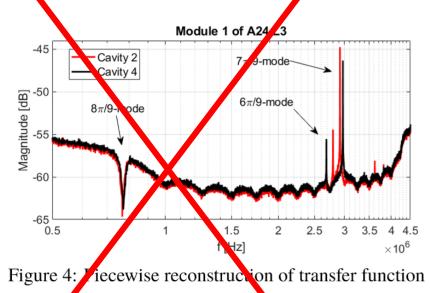
"Advanced LLRF System Setup Tool for RF Field Regulation of SRF Cavities" S. Pfeiffer, et al., Proceedings of SRF2019, Dresden, Germany

## **System Modelling for SRF cavity**

Remark: Piecewise reconstruction is often NOT the transfer function!

## **Piecewise reconstruction** with $G(w) = \frac{1}{w}(w)/U(w)$

• Chirp sine excitation with range of 500kHz each



- This approach works only if the steady state condition is reached!!!
- Applies also for other systems

## System identification

 Chirp sine signal in given range around passband mode

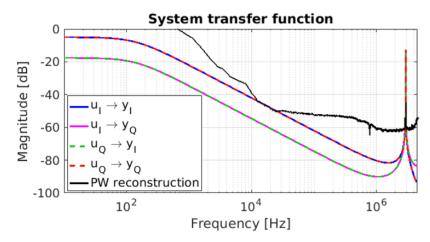


Figure 5: Grey box model identification with low-pass characteristic and  $7\pi/9$ -mode modelling for C2.M1.A24.L3. The magnitude plot using piecewise (PW) reconstruction have been added for completeness.

See: S.Pfeiffer et. al, Advanced LLRF System Setup Tool for RF Field Regulation of SRF Cavities, SRF2019,

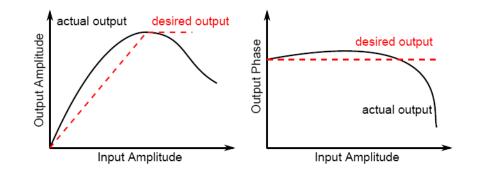
## **System Modelling**

### **Additional effects**

- Non-linear elements
  - E.g. klystron I/O characteristic
    - Quadratic/polynomial approximation
  - Saturation
  - Dead-zone
  - Hysteresis
  - ...
- Time varying elements
  - Characteristic changes over time

#### **Example Klystron**

- Non-linear behavior in amplitude (e.g. saturation at max. output) and phase
- Linearization of static characteristic curve
- Bandwidth usually tens of MHz (>> cavity BW)

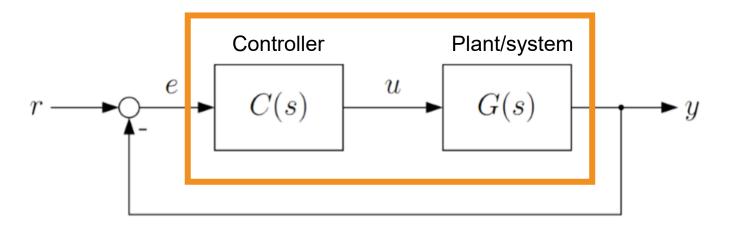


Output amplitude and phase is function of input amplitude

## **Outlook**

#### **Closed loop system analysis**

- 1. System description and modelling
- 2. Controller design/analysis
- 3. PID controller
- 4. Outlook

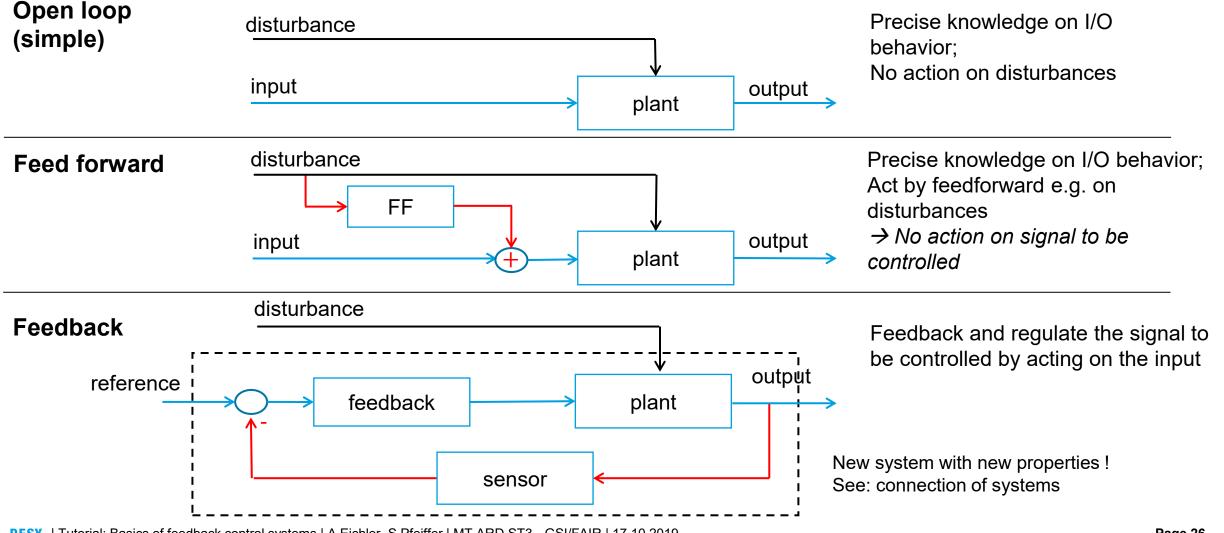


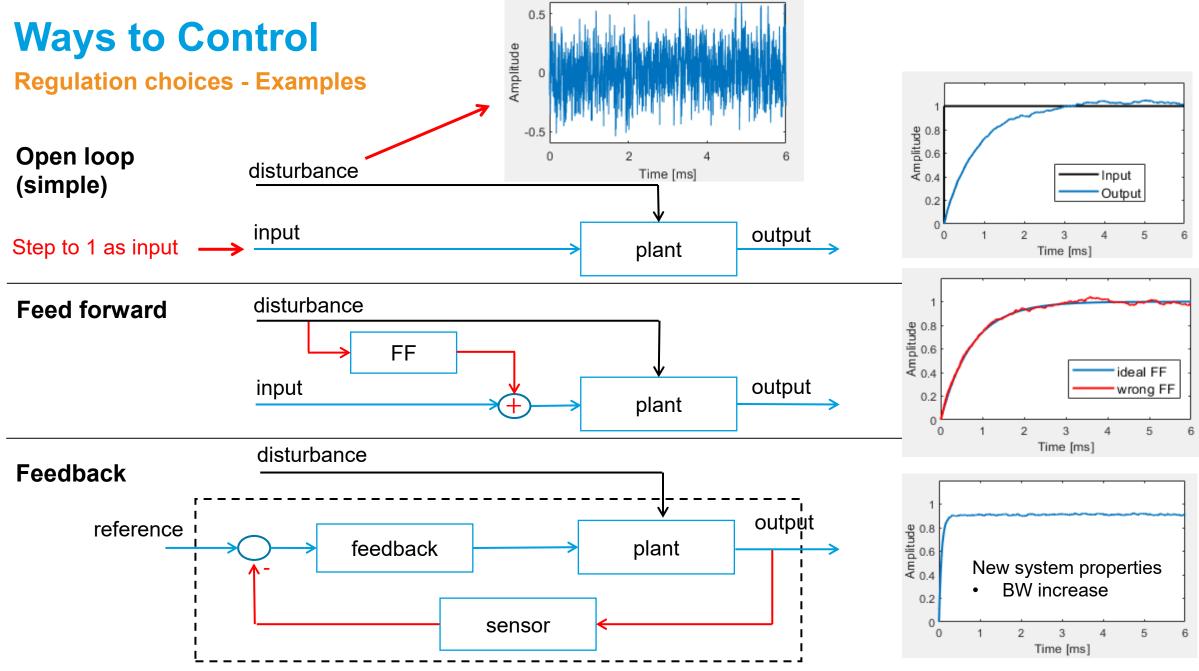
- Ways to control
- Stability
- Control objectives

## Ways to control

## **Ways to Control**

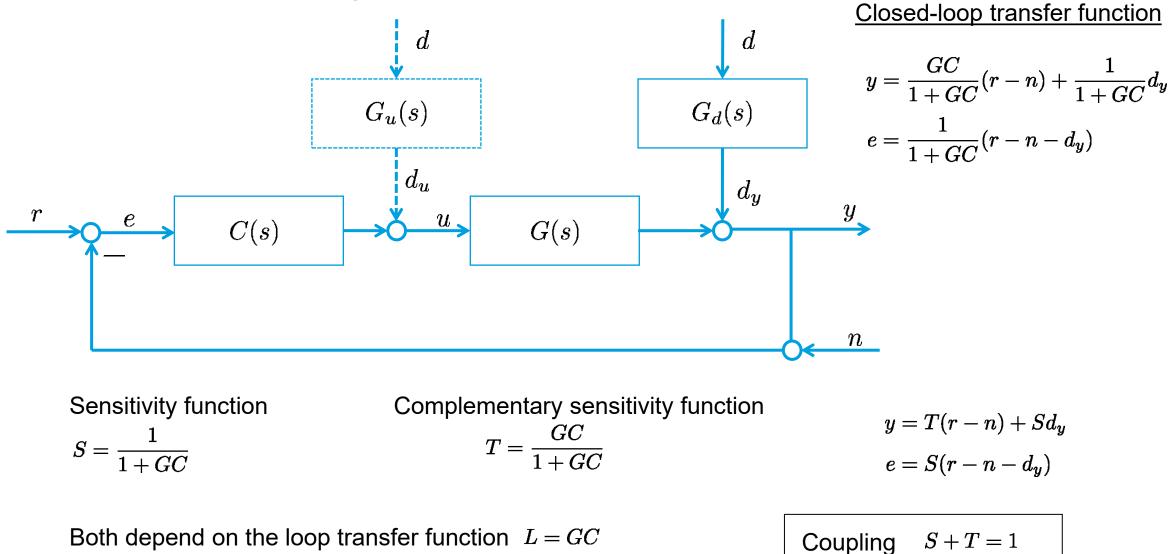
#### **Regulation choices**





## **Ways to Control**

#### **General Feedback Control Loop**



## Stability

## **Stability Criteria's (incomplete!)**

Stable if impulse response absolutely integrable and bounded

 $G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_s s + b_0}{s^n + a_{n-1} s^{n-1} + \ldots + a_s s + a_0}$ 

A system is stable if for a given bounded input signal the output signal is bounded and finite (BIBO stable); if not, the system is called unstable

### Stable or unstable linear systems

- Open loop or closed loop
- Unstable open loop: Stabilize closed loop system behavior using feedback controller

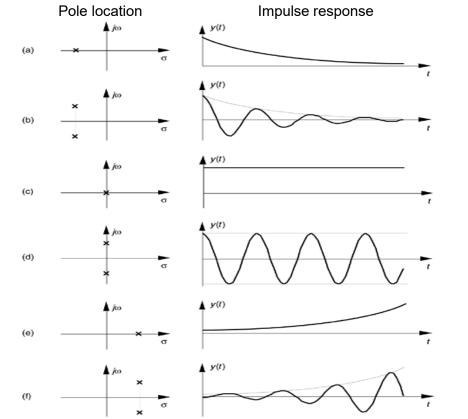
## Stability check in s-domain by e.g.:

- Pole location (all poles in left half plane)
- Bode diagram
- Nyquist plot
- H-infinity norm for MIMO systems

Non-linear systems  $\rightarrow$  harmonic balance

## → Check stability for "Gang of four" (internal stability)

This system has *n* poles and *m* zeros, and if it is physically realizable we have  $n \ge m$ .



Understanding Digital Signal Processing (2nd Edition) Mar 25, 2004by Richard G. Lyons

## **Stability Criteria's (incomplete!)**

Stable if impulse response absolutely integrable and bounded

A system is stable if for a given bounded input signal the output signal is bounded and finite (BIBO stable); if not, the system is called unstable  $|G|^{+}$ 

### Stable or unstable linear systems

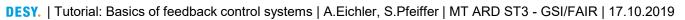
- Open loop or closed loop
- Unstable open loop: Stabilize closed loop system behavior using feedback controller

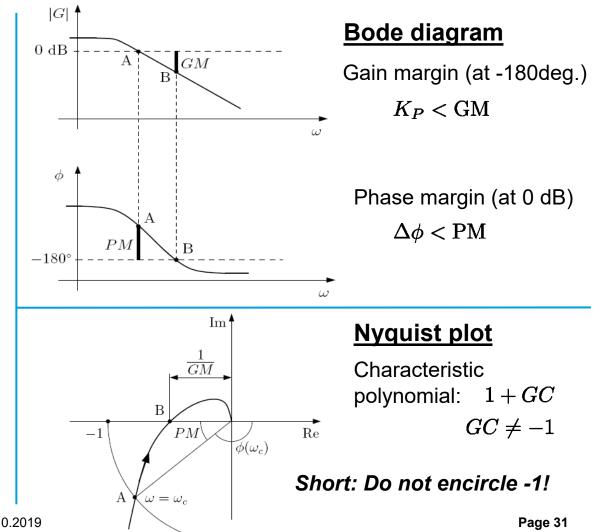
## Stability check in s-domain by e.g.:

- Pole location (all poles in left half plane)
- − Bode diagram → Op
  - Open-loop Bode/Nyquist of L=CG to analyze closed-loop stability
- Nyquist plot
- H-infinity norm for MIMO systems

Non-linear systems  $\rightarrow$  harmonic balance

## → Check stability for "Gang of four" (internal stability)



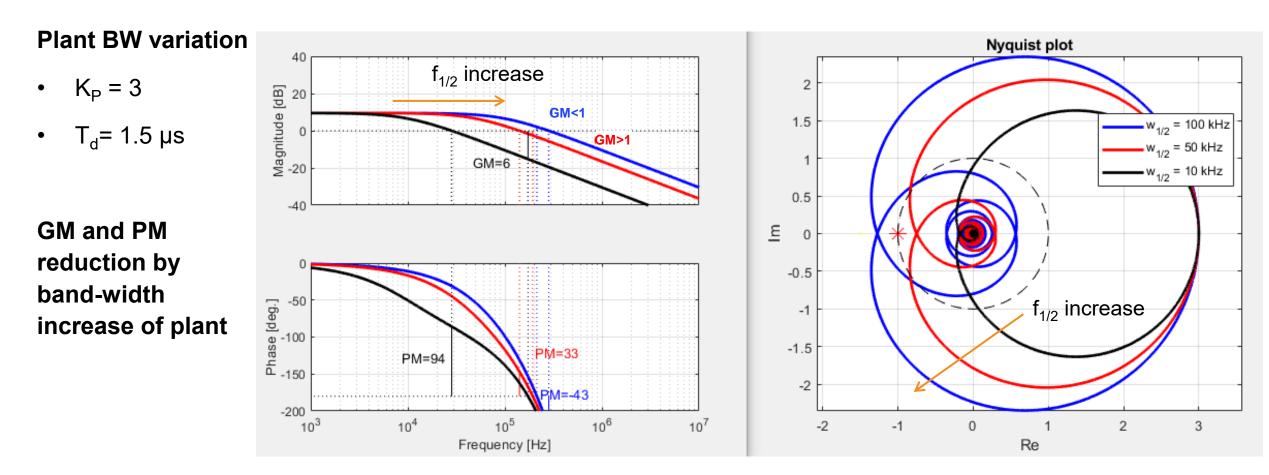


 $G(s) = \frac{b_m s^m + b_{m-1} s^{m-1} + \ldots + b_s s + b_0}{s^n + a_m + a_m + s^{n-1} + \ldots + a_s s + a_0}$ 

## **Robustness margins**

How close is a system to instability

#### Example RF-gun @ Eu-XFEL and FLASH



## **Robustness margins**

How close is a system to instability

#### Example RF-gun @ Eu-XFEL and FLASH

٠

٠

#### **Delay variation** Nyquist plot 40 05 Magnitude [dB] 0-50 $f_{1/2} = 50 \text{ kHz}$ 2 1.5 GM>1 K<sub>P</sub> = 3 GM=4 GM<1 1 0.5 -40 **GM and PM increase** Ε 0 by reduction of the -0.5 T<sub>d</sub> smaller time delay. [.69] -100 -150 -150 -1 T<sub>d</sub> smaller PM=84 -1.5 -2 PM=-4 -200 10<sup>5</sup> 10<sup>6</sup> $10^{7}$ 104 10<sup>3</sup> -2 -1 0

Frequency [Hz]

3

2

Re

-Τ<sub>d</sub> = 3 μs

T<sub>d</sub> = 1.5 μs

-Τ<sub>d</sub> = 0.5 μs

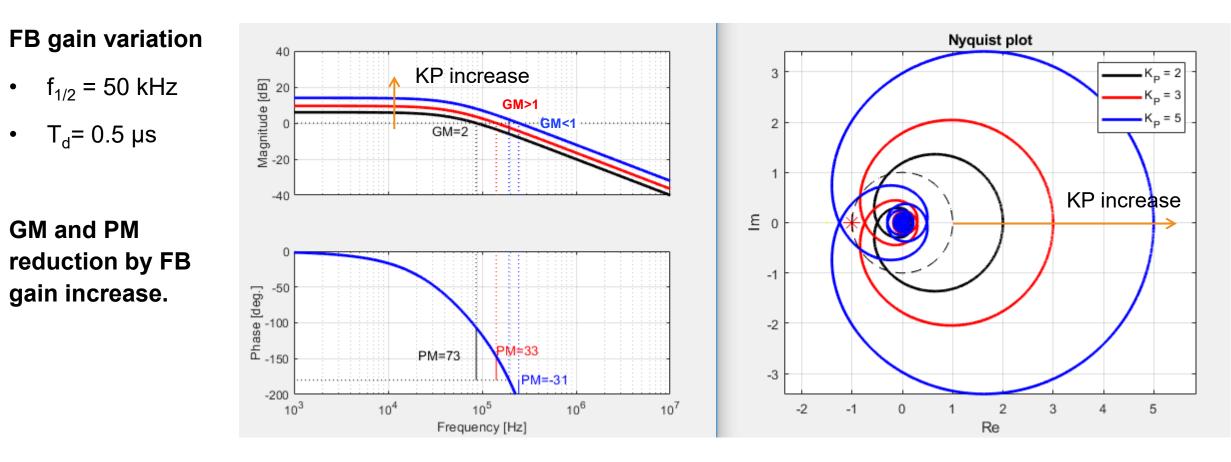
## **Robustness margins**

How close is a system to instability

### Example RF-gun @ Eu-XFEL and FLASH

## $\rightarrow$ Trade-off: robustness vs. performance

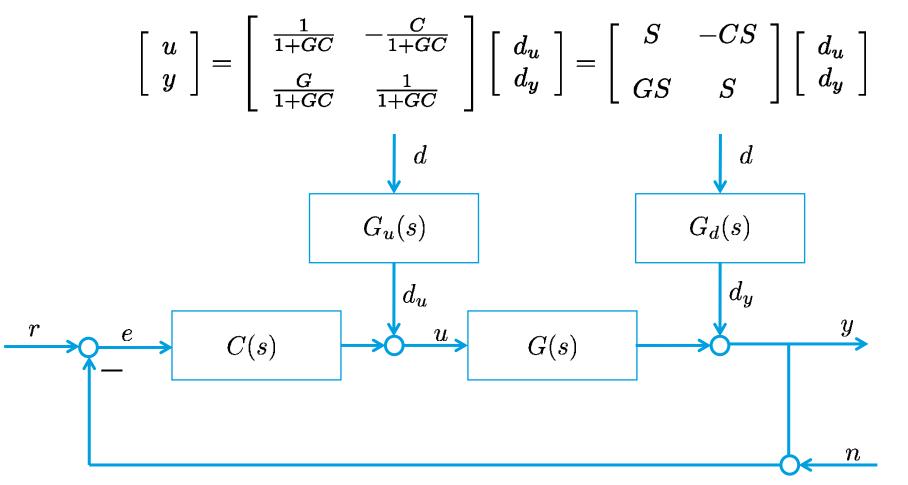
e.g. in case of plant variations, delay changes and FB gain variations



## **Gang of Four**

#### **Internal stability**

The closed-loop system is internally stable (if no unstable hidden modes in C and G) if and only if all four transfer functions are stable:

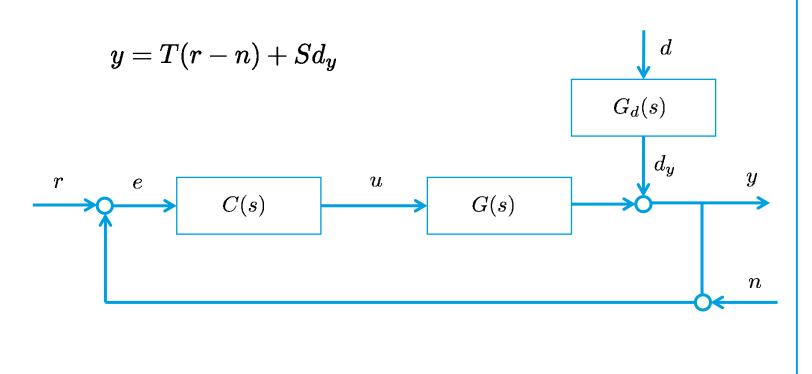


## **Control objectives**

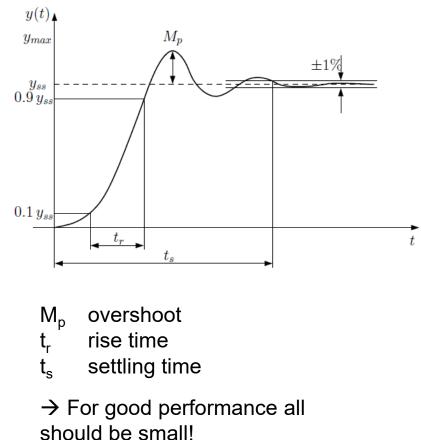
## **Closed-loop Performance**

**Performance measures in time-domain** 

- Servo problem (reference tracking without disturbance and noise)
  - Manipulate u(t) to keep the output y(t) close to the reference r(t)



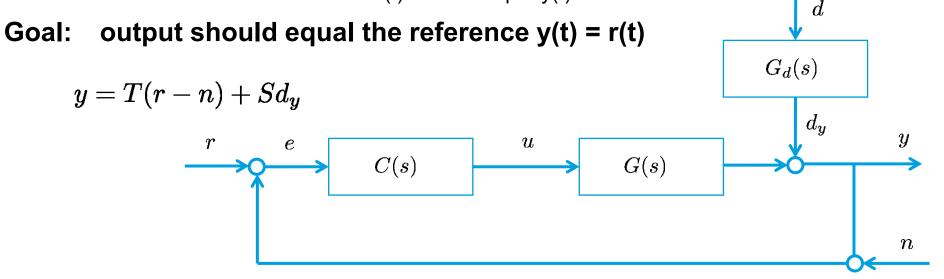
**Step response** r(t) = unit step, n(t) = 0, d(t) = 0



## **Objective of a Feedback Control Problem**

#### Make the output y(t) behave in a desired way by manipulating the plant input u(t)

- **Regulator problem** (output disturbance rejection with constant reference and without noise)
  - Counteract the effect of a disturbance d(t)
- Servo problem (reference tracking without disturbance and noise)
  - Manipulate u(t) to keep the output y(t) close to the reference r(t)
- *Noise rejection* (noise rejection with constant reference and without disturbance)
  - Counteract the effect of a noise n(t) on the output y(t)

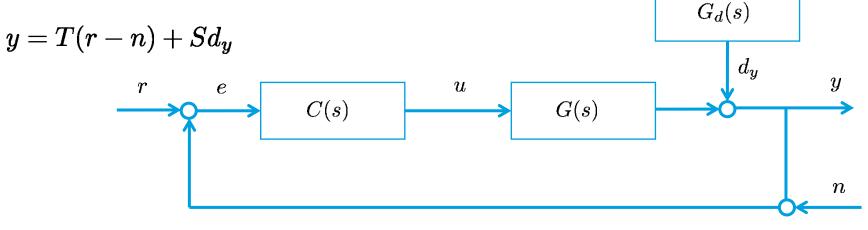


## **Objective of a Feedback Control Problem**

#### Make the output y(t) behave in a desired way by manipulating the plant input u(t)

- **Regulator problem** (output disturbance rejection with constant reference and without noise)
  - Counteract the effect of a disturbance d(t)
- Servo problem (reference tracking without disturbance and noise)
  - Manipulate u(t) to keep the output y(t) close to the reference r(t)
- Noise rejection (noise rejection with constant reference and without disturbance)
  - Counteract the effect of a noise n(t) on the output y(t)

Goal: output should equal the reference y(t) = r(t)



S = 0

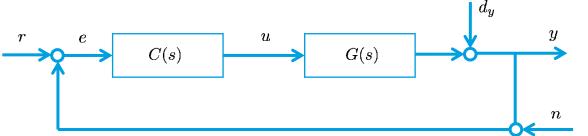
T = 1

T = 0

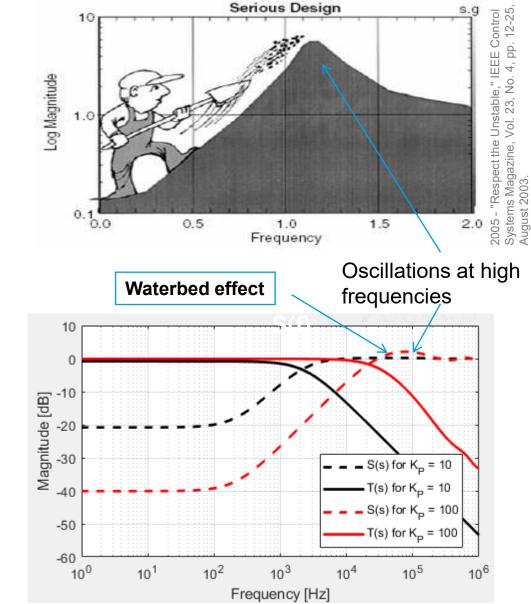
d

## **Fundamental Limitations on Sensitivity**

#### Waterbed effect

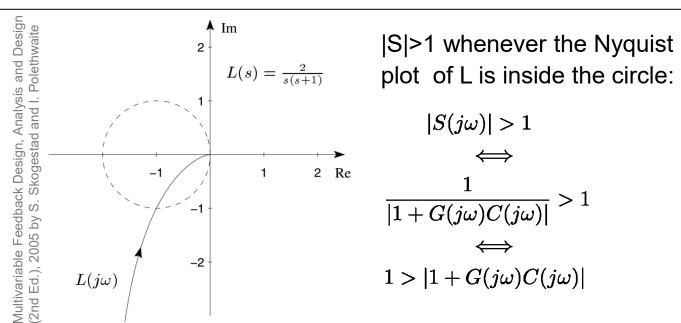


- Conflicting goals:
  - S = 0 for disturbance rejection
  - T = 1 for reference tracking
  - T = 0 for noise rejection
- Typically:
  - High frequency noise signal n
  - Low frequency disturbance d
  - Low frequency reference signal r
- Choose:  $S(0) = \text{small}; \quad S(\infty) = 1$  $T(0) = 1; \qquad T(\infty) = \text{small}$



## **Fundamental Limitations on Sensitivity**

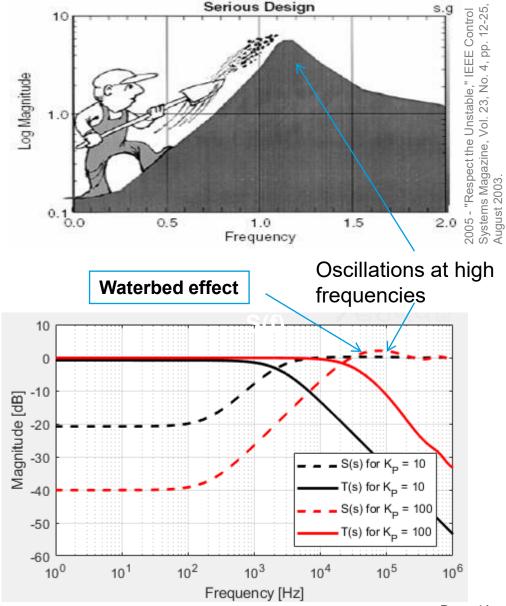
#### Waterbed effect



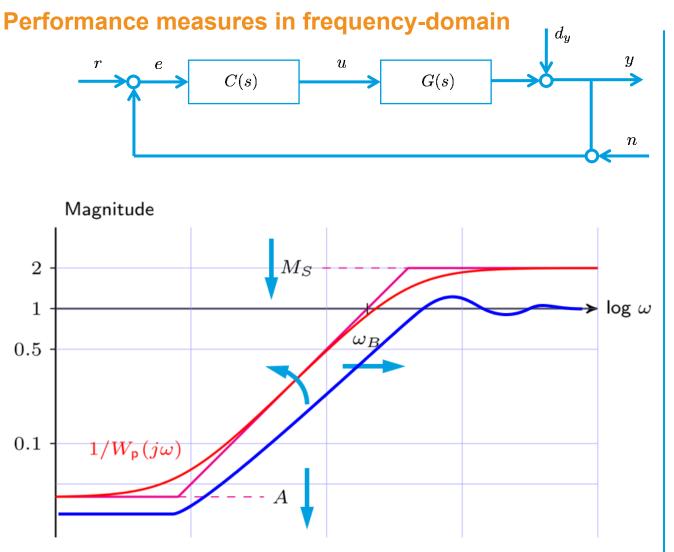
If the loop transfer function L=GC is stable, than

$$\int_0^\infty \ln |S(j\omega)| d\omega = 0$$

If we push  $|S(j\omega)|$  down at low frequencies  $\rightarrow$  it must pop up somewhere else (at high frequencies)



## **Closed-loop Performance**



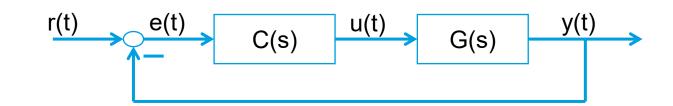
**Desired bound sensitivity function** 

$$egin{aligned} S(0) &= ext{small}; & S(\infty) &= 1 \ T(0) &= 1; & T(\infty) &= ext{small} \end{aligned}$$

- $M_s$  : push down for better robustness margins
- $\omega_b$  : increase the bandwidth
- *A* : push down for smaller steady state error
- Increase slope for better transient behavior

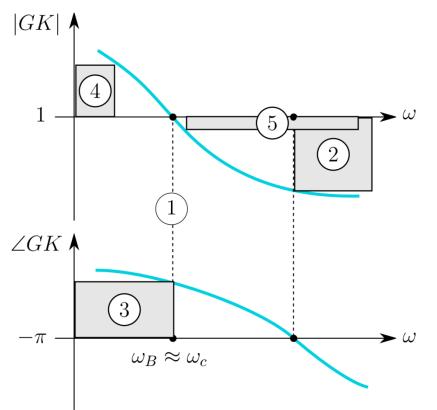
## **Classical FB Control**

Frequency domain analysis



#### Loop Shaping

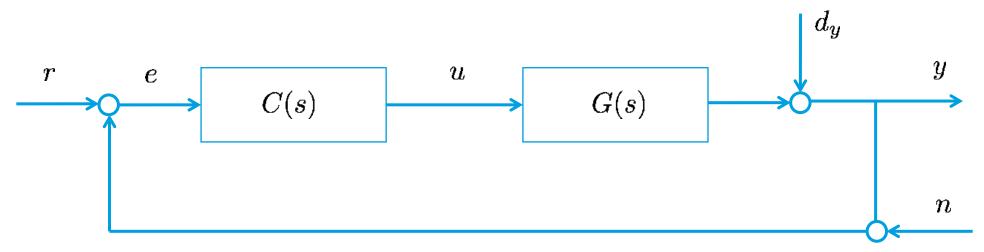
modify the open-loop system L(s) = C(s)G(s) to ensure effective control in closed loop



- ) crossover frequency (for large bandwidth)
- 2) gain margin (GM) (for closed-loop robustness)
- (3) phase margin (PM) (for closed-loop robustness)
  - $\underbrace{4}_{(\text{for small stationary control error})} |GK|_{s=0} \gg 1$
- 5 nominal stability of closed loop (use Nyquist/Bode/small gain criterion)

## **Closed-loop Performance**

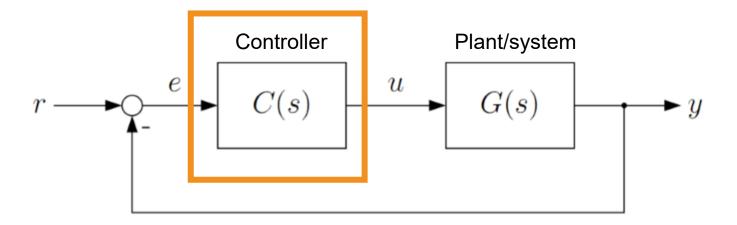
#### **Robustness vs. Performance**



- In general: Trade-off between robustness and performance
  - $\rightarrow$  Example with proportional controller  $K_P$
- Way out: more complicated controller structure
  - $\rightarrow$  Offer more degrees of freedom to improve both

#### **Closed loop system analysis**

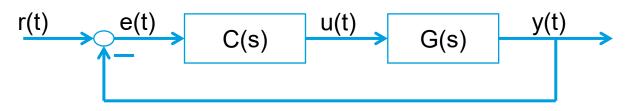
- 1. System description and modelling
- 2. Controller design/analysis
- 3. PID controller
- 4. Outlook



## **PID Controller**

## **PID Controller**

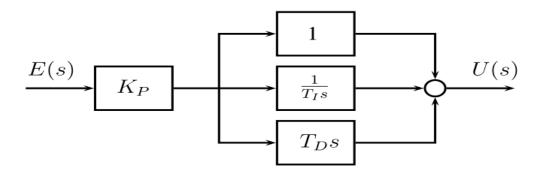
#### Influence of the PID components



#### **PID-Control**

 $\frac{U(s)}{E(s)} = C(s) = K_P$ 

$$u(t) = K_P \left( e(t) + rac{1}{T_I} \int_{t_0}^t e( au) d au + T_D \dot{e}(t) 
ight)$$
 $U(s) = K_P \left[ 1 + rac{1}{T_I s} + T_D s 
ight] E(s)$ 



#### **Proportional P**

changes the magnitude and not the phase

- increasing P decrease steady state error
- increasing P decreases robustness margins

#### Integral I

magnitude  $\rightarrow$  infinity for frequencies  $\rightarrow 0$ 

- no steady state error
- in case of saturation → loop is cut open (integrator keeps integrating → bad transients)
   (→ Integrator windup)

#### **Derivative D**

Introduces a 90° phase lead at high frequencies

- can improve phase margin (smaller overshoot)
- sensitive at high frequencies → noise amplification

**Ziegler-Nichols tuning rules** 

#### Ziegler Nichols tuning rules 1 (step response)

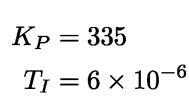


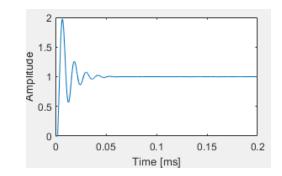
|     | $K_P$ | $T_I$ | $T_D$ |
|-----|-------|-------|-------|
| Р   | 1/a   | 8     | 0     |
| PI  | 0.9/a | 3L    | 0     |
| PID | 1.2/a | 2L    | l/2   |

Knowledge of G(s) not required!

#### Tuning rules for example system

#### Rule 1

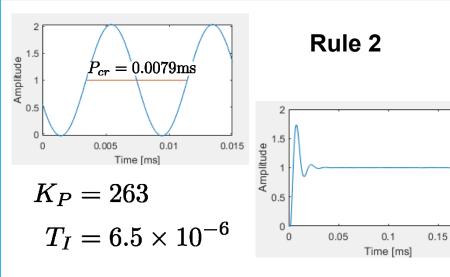




#### Ziegler Nichols tuning rules 2 (stable oscillation)

- Close the loop with proportional controller
- Increase controller gain to the *critical gain*  $K_{cr}$  (steady state oscillation)  $T_L$   $T_D$
- Period of oscillation is critical period P<sub>cr</sub>

|                                                | -                   | 0. (                | •                    |  |
|------------------------------------------------|---------------------|---------------------|----------------------|--|
|                                                | $K_P$               | $T_I$               | $T_D$                |  |
| Р                                              | $0.5 \cdot K_{cr}$  | $\infty$            | 0                    |  |
| PI                                             | $0.45 \cdot K_{cr}$ | $0.83 \cdot P_{cr}$ | 0                    |  |
| PID                                            | $0.6 \cdot K_{cr}$  | $0.5 \cdot P_{cr}$  | $0.125 \cdot P_{cr}$ |  |
| Knowledge of G(s) not required! Time-consuming |                     |                     |                      |  |
| and dangerous driving close to instability     |                     |                     |                      |  |



DESY. | Tutorial: Basics of feedback control systems | A.Eichler, S.Pfeiffer | MT ARD ST3 - GSI/FAIR | 17.10.2019

0.2

#### More tuning rules

#### Practical tuning

- Define performance criteria (RMSE, overshoot, rise time...)
- Increase  $K_P$  with  $1/T_I=0$  until performance gets worse •

Skogestad for PI controller [Skogestad.2003]

 $G(s) = \frac{b_0}{s+a_0} e^{-T_d s}$ 

Desired rise time  $\tau_c$ 

•

For first (and second) order systems with delay

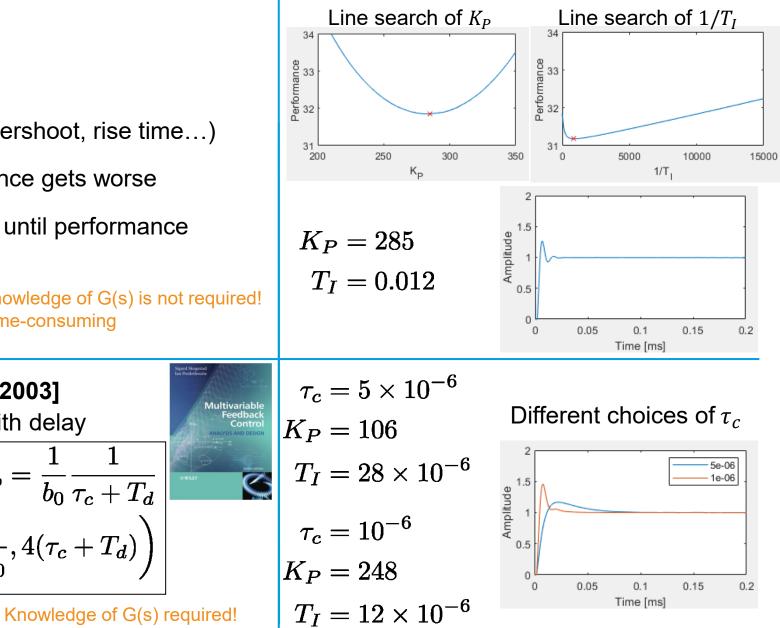
Increase  $1/T_I$  with the  $K_P$  found before until performance • gets worse

> Knowledge of G(s) is not required! Time-consumina

 $K_p = \frac{1}{b_0} \frac{1}{\tau_c + T_d}$ 

 $\Big| \ T_I = \min\left(rac{1}{a_0}, 4( au_c + T_d)
ight)$ 

#### Tuning rules for example system



DESY. | Tutorial: Basics of feedback control systems | A.Eichler, S.Pfeiffer | MT ARD ST3 - GSI/FAIR | 17.10.2019

#### Comparison for the example system

Cost function 
$$= \int_{t=0}^{6ms} e(t)^2$$

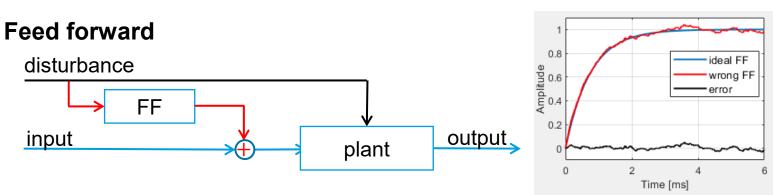
Performance contour (optimum)

- strongly depends on chosen cost function
- strongly depends on system type

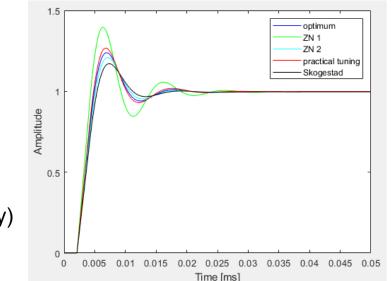


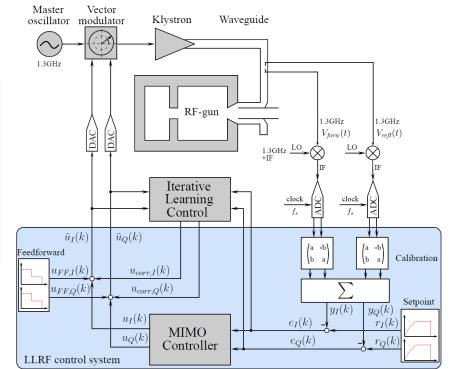
#### Comparison for the example system

- Optimization using this cost function:
  - Looks fine in terms of reference tracking, but does not penalize the available input signal/power (in FB 150x more drive signal needed compared to FF only)
    - SRF cavity with  $w_{1/2}$ =214 Hz reaches steady state in 20  $\mu$ s...
- How to overcome this?
  - Choose proper feedforward signal and adjust the reference correspondingly



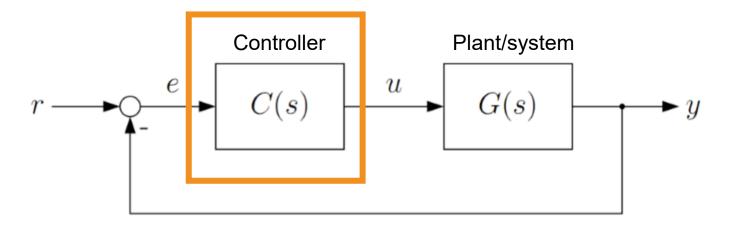
- PID tuning rules does not apply for all practical problems
  - Be careful, start conservative and/or talk to an expert





#### **Closed loop system analysis**

- 1. System description and modelling
- 2. Controller design/analysis
- 3. PID controller
- 4. Outlook



**Types of Feedback Control** 

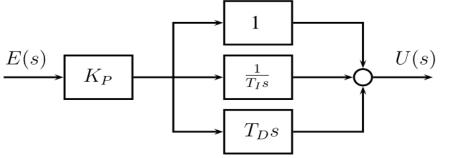
#### <u>Classical FB Control</u> Frequency domain analysis

 $\rightarrow$  Bode Diagram, Nyquist Plot

#### **PID-Control**

 $\frac{U(s)}{E(s)} = C(s) = K_P$ 

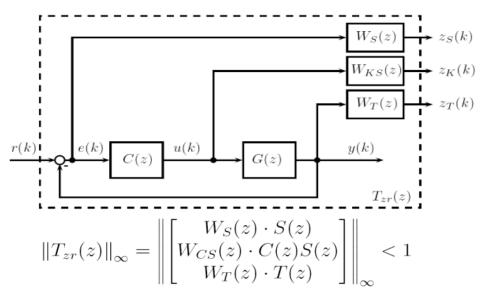
$$u(t) = K_P \left( e(t) + rac{1}{T_I} \int_{t_0}^t e( au) d au + T_D \dot{e}(t) 
ight)$$
 $U(s) = K_P \left[ 1 + rac{1}{T_I s} + T_D s 
ight] E(s)$ 

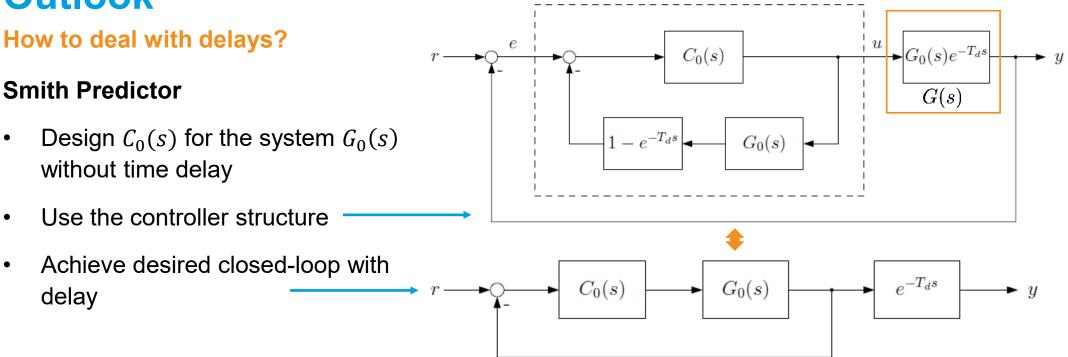


#### Modern FB Control

Time domain analysis

- → State space representation  $\dot{x}(t) = Ax(t) + Bu(t)$ y(t) = Cx(t) + Du(t)
- → Linear-quadratic regulator (LQR) etc.  $u(t) = -K \cdot x(t)$
- → H-infinity optimization by shaping the sensitivity and complementary sensitivity function





#### MIMO systems (multi-input multi-output systems)

- Plant with *m* inputs and *l* outputs  $\rightarrow G(s)$  is a  $l \times m$  transfer matrix
- Stability is in terms of eigenvalues of *A* matrix, generalized Nyquist (Bode does not generalize)
- Change one input affects all output  $\rightarrow$  coupling between inputs and outputs
- Manual controller tuning gets tedious → optimization based controller synthesis (see modern FB control)

# Thank you for your attention!

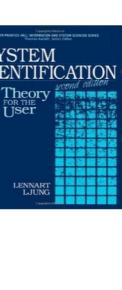


## **Any Questions?**

Contact: annika.eichler@desy.de; sven.pfeiffer@desy.de

## **Bibliography**

- [Ljung.1999], (1999), System Identification, Theory for the User, Prentice-Hall Inc. USA, 2<sup>nd</sup> edition, ISBN 0-
- [Skogestad.2005], Skogestad, S. and Postlethwaite, I. (2005), *Multivariable feedback control: Analysis and c* edition, ISBN 9780470011676
- [Skogestad.2003] "Simple analytic for model reduction and PID controller tuning," Journal of Process Control, Vol. 13, pp. 291 also see corrections in Vol.14, p. 465 (2004)
- [Stein.2003] "Respect the Unstable," IEEE Control Systems Magazine, Vol. 23, No. 4, pp. 12-25 (2003).
- [Schilcher.1998], Vector sum control of pulsed accelerating fields in lorentz force detuned superconducting cavities, Ph.D. thesis, Hamburg University, 1998
- [Vogel.2007], High gain proportional rf control stability at TESLA cavities. *Physical Review Special Topics Accelerators and Beams* 10, 2007
- [Omet.2014], PhD Thesis, KEK, 2014, http://www-lib.kek.jp/cgi-bin/kiss\_prepri.v8?KN=201424001&OF=8
- Pictures from DESY website; *https://media.desy.de/DESYmediabank/?l=de&c=3976* and other sources in www



Multivariable Feedback Control

#### Contact

| <b>DESY.</b> Deutsches | Eichler, Annika; Pfeiffer, Sven |
|------------------------|---------------------------------|
| Elektronen-Synchrotron | MSK                             |
|                        | <u>Annika.eichler@desy.de;</u>  |
| www.desy.de            | 040-8998-4041;-2744             |