Space charge dominated beam transport for THz/ studies at PITZ

X.-K. Li, P. Boonpornprasert, H. Shaker, Y. Chen, J. Good, M. Gross, H. Huck, I. Isaev, C. Koschitzki, M. Krasilnikov, S. Lal, O. Lishilin, G. Loisch, D. Melkumyan, R. Niemczyk, A. Oppelt, H. Qian, G. Shu, F. Stephan, G. Vashchenko, Desy, Zeuthen 15738, Germany

- 2) Low beam energy -> no need for large beam dump, therefore is close to XFEL user hall and can support all XFEL end stations
- Challenges:
 - Generation, transport and matching of space charge dominated beam with proper beam quality (peak current, emittance, etc.)

Parameter study towards mJ energy

Genesis 1.3 simulation

- LCLS-I undulator module
- Flattop electron beam
- Transverse emittance: 4 μm
- Radiation wavelength: 100 µm

The <u>transverse phase</u> spaces are thus defined to well transport the beam in the vacuum chamber of the undulator

High peak current beam experiment

- Challenges
- 1) High charge generation
- 2) Proper beam quality
- Transport and matching
- **Experimental setup**
 - Gaussian laser FWHM~6 ps
 - Near saturation emission

<u>comparison of measured and simulated beam parameters</u>			
Parameter	Meas.	Simul.	Unit
Laser FWHM	6.2	6	ps
BSA	4	4	mm

nC

MeV/c

Α

mm mr

2.5

17

156

4.14

Xrms = 1.54 mm

Yrms = 0.32 mm

0

x (mm)

-2

(mm)

>-2

proof-of-principle experiment for pump-probe experiments at EuXFEL

- With the ideal flattop laser, start-to-end simulations with space charge dominated beams have yielded THz pulse energy of 0.5 mJ at 100 um
- Experimental studies on the generation, characterization and matching of beams of a few nC have been carried out in the existing PITZ beamline with a Gaussian laser. Next, beam transport will be carried out with even more bunch charge induced by a longer flattop laser

MT ARD Annual meeting, GSI, Darmstadt, 16-18.10. 2019

Xiangkun.li@desy.de

HELMHOLTZ **RESEARCH FOR GRAND CHALLENGES**

[1] B. Green, *et al*, Sci.Rep.V. 6, Article number: 22256 (2016) [2] M. Gensch, Proceedings of FEL 2013, 474 (2013) [3] T I Oh et al 2013 New J. Phys. 15 075002 [4] https://flash.desy.de/ [5] https://www.hzdr.de/db/Cms?pOid=34100&pNid=2609&pLang=en [6] M. Krasilnikov, et al, Proceedings of ICAP 2018, 314 (2018).