Device Error Handling in ChimeraTK

“Primary author
bPresenter

Motivation ChimeraTK

e Large fractions of code in control system applications are
error handling

> Wl

ChimeraTK

e Access to hardware, control
system servers and dumimies

(MicrorcaAamc) (TMcB2) ((Other DOOCS Server)

e Many errors are device errors, often 1/O errors

e [irror handling usually is similar

PCle
Ethernet
Ethernet

e Backends implement different
— Report the error to the control system , protocols

— Wait until the error condition is resolved (PCle Backend)(ReboT Backend)(DOOCS Backend)(Dummy Backend) o Plugin mechanism: Add new

— Resume normal Operation backends at run time
= Lots of concepts and code are copied across applications

Device Access Library

e Library to write modular control

: : (A lication Module} r ™) r N S
e Handle device errors in the framework i L Your applications
R | hould " eal H Application Core Application
e Business logic should not have to deal with device errors .
. . g . (Apphcat'on MOdUIe)/L) L Module)
(it can just read and write) ‘
L. e Connect applications to various
= Shorter and cleaner application code Control System Adapter) |
o o | control system middlewares
= Sophisticated error handling is available out of the box
— EPICS
______________________ . —DOOCS
1
(EPICS Adapter)(OPC UA Adapter)(DOOCS Adapter) ___'_I'_a_r__g_c_a__A_t_vl_a_P_t_t_er___'; _OPC UA
— Your control system
ApplicationCore Code Examples
void initialiseOven(ChimeraTK: :DeviceModule* oven) {
Device "timer system" Device "oven" Module "heater" // turn on the power of the oven in the initialisation
° IﬂpUt/OU_tpUt Variables oven->device.write<uint32 t>("/power", 1);
triggerNr temperatureReadback heatingCurrent ¥
T e One thread per module void Controller::mainLoop() {
. const double gain = 100.0;
Application Core Application Module "Controller" ® Spe(nal modules while(true) {
) readA11(); // waits until temperatureReadback has been updated,
IR heatingCurrent . — DGVICG module // then reads temperatureSetpoint
» temperatureReadback > Module Thread _ COHthl SyStem mOdU-le heatingCurrent = gain * (temperatureSetpoint - temparatureReadback);
writeAll(); // writes all outputs
» temperatureSetpoint > , ¥
Description of e Connect application modules };
connections Application Module "A o
in C++ pplication Module “Automation PY Triggering struct ExampleApp : public ChimeraTK::Application {
<>< SctualSetpoint .y ExampleApp() : Application('"demoApp2") {}
P — Read multiple variables synchronously ~ExampleApp() { shutdowm(); }
operatorSetpoint > Module Thread — Synchronise apphcation mOdlﬂeS e HW Controller controller{this, "Controller", "The Controller"};
> trigger e tfiggef ChimeraTK: :PeriodicTrigger timer{this, "Timer",
"Periodic timer for the controller", 1000};
Control System Module // Instantiate the oven with an initialisation function
7 | ChimeraTK: :DeviceModule oven{this, "oven", &initialiseOvenl};
temperatureReadback temperatureSetpoint actualSetpoint ChimeralK::ControlsystemModule cs;

void defineConnections();

Device Error Handling

Device module thread |
Each process variable has it’s own exception The device module has a thread which first

detection and reporting. opens the backend and then waits for errors

to be reported from the process variables.

ProcessVariable::read() @ 1B
initialise
| | | v . |
The backend provides the implementation @ 3 | When an error is reported, the device module
which performs the read or write operations. i- — = | walt R« automatically updates the device status that
[n case of 1/O errors or communication | ¢ is shown in the control system.
problems it will raise a runtime error | send status "error” |
exception, which is caught in the process | o The devs o | .
variable and reported to the device module backend.read() | | © CEVICE THOAIE tries to re-open the
thread | backend until it succeeds. The backend
OK runtime_error | knows the exact actions that are needed.
: | re-open After the Dbackend could be opened
<send value> report error — successfully, the device module tries to
error message OK S) . .
After reporting the error, the read() or | runtime_error run the initialisation procedure again. The
write() function will wait for a message i necessary initialisation sequences depend on
from the device module that the backend walt for reeei il - — — the hardware/firmware and are registered
is operational again. It will then | to the device module by the application.
retry the read()/write() such that the | OK In case the initialisation fails, the device
action eventually is performed correctly. | runtime_error module updates the error message and tries
This automatically will block the calling | send status "OK" to re-open the backend again.
L . . CS
application module until the device is | i
available again. No further handling is | i
L 5 . . 5 | After successful initialisation, the device
required in the business logic. | report SUcEEEE
recovery message B recovery module reports to the control system that
| the device is functional again, and then
notifies all blocked process variables that
ffffffffffffffffff they can resume operation.
Resources
e ChimeraTK source code: https://github.com/ChimeraTK/ e API documentation: https://chimeratk.github.io/ v g
o n
e Ubuntu 16.04 packages are available in the e Ask us for tutorials and live demos HELMHOLTZ 3 %
- : o =
DESY DOOCS repository e c-mail support: chimeratk-support@desy.de A=

Matter and Technologies — ARD ST3 Annual Meeting, GSI Darmstadt, 17th October 2019 BTEX TikZposter

https://github.com/ChimeraTK/
https://ttfinfo.desy.de/DOOCSWiki/Wiki.jsp?page=DOOCSStandaloneInstallation#section-DOOCSStandaloneInstallation-AddThePublicDOOCSPackageRepositoryToYourSystem
https://chimeratk.github.io/
mailto:chimeratk-support@desy.de
http://www.desy.de/~killenb/J_Timm_ChimeraTK_DeviceErrorHandling.pdf

