
LATEX TikZposter

Device Error Handling in ChimeraTK •
M. Killenberga, J. Timmb, J. Georg, M. Hierholzer, C. Kampmeyer, T. Kozak, N. Shehzad, G. Varghese
(Deutsches Eletronen-Synchrotron DESY, Hamburg)

aPrimary author
bPresenter

Device Error Handling in ChimeraTK •
M. Killenberga, J. Timmb, J. Georg, M. Hierholzer, C. Kampmeyer, T. Kozak, N. Shehzad, G. Varghese
(Deutsches Eletronen-Synchrotron DESY, Hamburg)

aPrimary author
bPresenter

Motivation
•Large fractions of code in control system applications are
error handling
•Many errors are device errors, often I/O errors
•Error handling usually is similar
–Report the error to the control system
–Wait until the error condition is resolved
–Resume normal operation

⇒Lots of concepts and code are copied across applications

Goal
•Handle device errors in the framework
•Business logic should not have to deal with device errors
(it can just read and write)

⇒ Shorter and cleaner application code
⇒ Sophisticated error handling is available out of the box

ChimeraTK
A tool kit for creating control applications

OPC UA AdapterEPICS Adapter DOOCS Adapter Tango Adapter

Control System Adapter 

Application Core

ReboT Backend DOOCS Backend

TMCB2 Other DOOCS Server

E
th
e
rn
e
t

E
th
e
rn
e
t

Dummy Backend

Device Access Library

PCIe Backend

P
C
Ie

MicroTCA AMC

Your
Application

Module

Application Module

Application Module

DeviceAccess
•Access to hardware, control
system servers and dummies
•Backends implement different
protocols
•Plugin mechanism: Add new
backends at run time

ApplicationCore
•Library to write modular control
applications

ControlSystemAdapter
•Connect applications to various
control system middlewares
–EPICS
–DOOCS
–OPC UA
–Your control system

ApplicationCore For alignment
Application modules
• Input/output variables
•One thread per module
• Special modules
–Device module
–Control system module

Connection code
•Connect application modules
•Triggering
–Read multiple variables synchronously
– Synchronise application modules to HW
trigger

Code Examples
void initialiseOven(ChimeraTK::DeviceModule* oven) {

// turn on the power of the oven in the initialisation
oven->device.write<uint32_t>("/power", 1);

}

void Controller::mainLoop() {
const double gain = 100.0;
while(true) {

readAll(); // waits until temperatureReadback has been updated,
// then reads temperatureSetpoint

heatingCurrent = gain * (temperatureSetpoint - temparatureReadback);
writeAll(); // writes all outputs

}
}

};

struct ExampleApp : public ChimeraTK::Application {
ExampleApp() : Application("demoApp2") {}
~ExampleApp() { shutdown(); }

Controller controller{this, "Controller", "The Controller"};

ChimeraTK::PeriodicTrigger timer{this, "Timer",
"Periodic timer for the controller", 1000};

// Instantiate the oven with an initialisation function
ChimeraTK::DeviceModule oven{this, "oven", &initialiseOven};
ChimeraTK::ControlSystemModule cs;

void defineConnections();
};

Device Error Handling
ProcessVariable::read()
Each process variable has it’s own exception
detection and reporting.

backend.read()
The backend provides the implementation
which performs the read or write operations.
In case of I/O errors or communication
problems it will raise a runtime_error
exception, which is caught in the process
variable and reported to the device module
thread.

Waiting for recovery
After reporting the error, the read() or
write() function will wait for a message
from the device module that the backend
is operational again. It will then
retry the read()/write() such that the
action eventually is performed correctly.
This automatically will block the calling
application module until the device is
available again. No further handling is
required in the business logic.

Device Error Handling For alignment
Device module thread
The device module has a thread which first
opens the backend and then waits for errors
to be reported from the process variables.

Send status “error” to CS
When an error is reported, the device module
automatically updates the device status that
is shown in the control system.

Re-open and initialise
The device module tries to re-open the
backend until it succeeds. The backend
knows the exact actions that are needed.
After the backend could be opened
successfully, the device module tries to
run the initialisation procedure again. The
necessary initialisation sequences depend on
the hardware/firmware and are registered
to the device module by the application.
In case the initialisation fails, the device
module updates the error message and tries
to re-open the backend again.

Reporting success
After successful initialisation, the device
module reports to the control system that
the device is functional again, and then
notifies all blocked process variables that
they can resume operation.

Resources All ChimeraTK components are published under the GNU GPL or the GNU LGPL.

•ChimeraTK source code: https://github.com/ChimeraTK/
•Ubuntu 16.04 packages are available in the
DESY DOOCS repository

•API documentation: https://chimeratk.github.io/
•Ask us for tutorials and live demos
• e-mail support: chimeratk-support@desy.de D

ow
nl
oa
d

th
is

po
st
er
:

Matter and Technologies — ARD ST3 Annual Meeting, GSI Darmstadt, 17th October 2019

https://github.com/ChimeraTK/
https://ttfinfo.desy.de/DOOCSWiki/Wiki.jsp?page=DOOCSStandaloneInstallation#section-DOOCSStandaloneInstallation-AddThePublicDOOCSPackageRepositoryToYourSystem
https://chimeratk.github.io/
mailto:chimeratk-support@desy.de
http://www.desy.de/~killenb/J_Timm_ChimeraTK_DeviceErrorHandling.pdf

