









Tutorial: Beam Diagnostics ARD ST3 Annual Meeting October 2019 GSI Darmstadt, 18<sup>th</sup> of October 2019 Peter Forck, GSI

October 18<sup>th</sup>, 2019 ARD ST3 Annual Meeting <u>GSI, Darms</u>tadt





#### Standard instrumentation is discussed only!

Some hints to recent developments & comparison electron ↔ proton instrumentation. Laser wake-field accelerators are not covered.

#### General usage of beam instrumentation:

- > Monitoring of beam parameters for operation, beam alignment & accelerator development
- Instruments for automatic, active beam control e.g. orbit feedback

#### Non-invasive ( = 'non-intercepting' or 'non-destructive') methods are preferred:

- $\blacktriangleright$  The beam is not influenced  $\Rightarrow$  the **same** beam can be measured at several locations
- The instrument is not destroyed due to high beam power by proton beams

Non-scanning, 'single shot' methods are preferred: Beam fluctuations at LINACs are visible Observation during entire cycle are preferred: Consistent beam evolution visible at synchr.

#### **General tendencies:**

- Electron accelerator: High spatial &temporal resolution due to small beams, short pulses
- ➢ Proton & ion accelerator: Non-invasive methods due to high beam power, radiation hardness long pulses t<sub>pulse</sub> ≫ 1 µs (except for laser-wakefield acceleration)

Both: High accuracy required to critical beam setting

#### **Topics of this tutorial:**

- Beam current and bunch charge by transformers
  - 1. Broadband, 'fast' current transformer FCT
  - 2. dc current transformer DCCT e.g. for synchrotron
  - 3. Integrating current transformer ICT for short pulse at LINAC-FELs
- Beam center-of-mass by Beam Position Monitors BPM
- Transverse profile measurement techniques
- Longitudinal profile = bunch shape measurement





# Magnetic field of the beam and the ideal Transformer

**>** Beam current of  $N_{part}$  charges with velocity  $\beta$  $I_{beam} = qe \cdot \frac{N_{part}}{l} = qe \cdot \beta c \cdot \frac{N_{part}}{l}$ > cylindrical symmetry magnetic field B at radius r:  $B \sim 1/r$  $\rightarrow$  only azimuthal component  $\overrightarrow{B} \parallel \overrightarrow{e}_{0}$  $\vec{B} = \mu_0 \frac{I_{beam}}{2\pi r} \cdot \vec{e_{\varphi}}$ Example:  $I = 1 \mu A$ ,  $r = 10 \text{ cm} \Rightarrow B_{beam} = 2 \text{ pT}$ , earth  $B_{earth} = 50 \mu T_{beam \text{ current I}}$ Idea: Beam as primary winding and sense by sec. winding.  $\Rightarrow$  Loaded current transformer  $I_1/I_2 = N_2/N_1 \Rightarrow I_{sec} = 1/N \cdot I_{beam}$  $\succ$  Inductance of a torus of  $\mu_r$ Torus to guide the magnetic field  $L = \frac{\mu_0 \mu_r}{lN^2} \cdot lN^2 \cdot \ln \frac{r_{out}}{lN^2}$  $2\pi$   $r_{in}$ > Goal of torus: Large inductance **L** Ibean Vout and guiding of field lines. Definition:  $U = L \cdot dI/dt$ 



#### Simplified electrical circuit of a passively loaded transfor





Equivalent circuit for analysis of sensitivity and bandwidth (without loss resistivity  $R_L$ )



A voltages is measured:

 $U = R \cdot I_{sec} = R / N \cdot I_{beam} \equiv S \cdot I_{beam}$  with *S* sensitivity [V/A], equivalent to transfer function or transfer impedance *Z* 

courtesy Company Bergoz



U(t)

#### Time domain description:

Droop time: $\tau_{droop} = 1/(2\pi f_{low}) = L/R$ Rise time:  $\tau_{rise} = 1/(2\pi f_{high}) = 1/RC_s$  (ideal without cable Rise time:  $\tau_{rise} = 1/(2\pi f_{high}) = \sqrt{L_s}C_s$  (with cables)  $R_L$ : loss resistivity, R: for measuring.



 $\Rightarrow$  No transformation of dc-signals

**Baseline:**  $U_{base} \propto 1 - \exp(-t/\tau_{droop})$ **positive** & **negative** areas are equal

simplified equivalent circuit

I-source

represents

R

## **Example for Fast Current Transformer**

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz  $\Leftrightarrow$  10 ns <  $t_{bunch}$  < 1 µs is well suited Example GSI type:

| Inner / outer radius                     | 70 / 90 mm                                                    |
|------------------------------------------|---------------------------------------------------------------|
| Permeability                             | $\mu_r \approx 10^5$ for f < 100kHz $\mu_r \propto 1/f$ above |
| Windings                                 | 10                                                            |
| Sensitivity                              | 4 V/A for R = 50 $\Omega$                                     |
| Droop time $\tau_{droop} = L/R$          | 0.2 ms                                                        |
| Rise time $\tau_{rise} = \sqrt{L_S C_S}$ | 1 ns                                                          |
| Bandwidth                                | 2 kHz 500 MHz                                                 |



Fast extraction from GSI synchrotron:



# **Example for Fast Current Transformer**

For bunch beams e.g. during accel. in a synchrotron typical bandwidth of 2 kHz < f < 1 GHz  $\Leftrightarrow$  10 ns <  $t_{bunch}$  < 1  $\mu$ s is well suited Example GSI type:

| Inner / outer radius                     | 70 / 90 mm                                                       |
|------------------------------------------|------------------------------------------------------------------|
| Permeability                             | $\mu_r \approx 10^5$ for f < 100kHz<br>$\mu_r \propto 1/f$ above |
| Windings                                 | 10                                                               |
| Sensitivity                              | 4 V/A for R = 50 $\Omega$                                        |
| Droop time $\tau_{droop} = L/R$          | 0.2 ms                                                           |
| Rise time $\tau_{rise} = \sqrt{L_S C_S}$ | 1 ns                                                             |
| Bandwidth                                | 2 kHz 500 MHz                                                    |

mmmm

90

injection



*Example:*  $U^{73+}$  from 11 MeV/u ( $\beta$  = 15 %) to 350 MeV/u



Peter Forck, ARD ST3, 19th Oct. 2019

Revolutions in SIS18 [10<sup>3</sup>]

30

0,10

0,08

0,06

0,04

0

RMS bunch length [µs]

FCT

# Longitudinal Bunch Diagnostics inside Synchrotron by FCT



# Acceleration and bunch 'gymnastics' are performed **inside** synchrotrons Bunch shaping for fast, single turn extraction

*Example*: Bunch merging at upper flattop using 2 cavities at GSI synchrotron Beam: 10<sup>9</sup> U<sup>73+</sup> at 600 MeV/u, FCT

*Example*: 'Bunch compression' prior to extraction Beam: U<sup>73+</sup> at 300 MeV/u at GSI synchrotron



Further application: Input for cavity regulation loop

**Remark:** At synchrotron light sources, bunch shape by streak camera recording synchrotron light. Example shown in talk by J.G. Hwang for BESSY-VSR

Peter Forck, ARD ST3, 19th Oct. 2019

## Task of the shield:

- > The image current of the walls have to be bypassed by a gap and a metal housing.
- $\succ$  This housing uses  $\mu$ -metal and acts as a shield of external B-field
  - (remember:  $I_{beam}$  = 1 µA, r = 10 cm  $\Rightarrow$   $B_{beam}$  = 2pT, earth field  $B_{earth}$  = 50 µT)





The dc Transformer DCCT

A single transformer needs varying beam  $\rightarrow$  DCCT: The trick is to 'switch two transformers'!

How to measure the DC current? The current transformer discussed sees only B-flux *changes*.





# The dc Transformer

# Working principle:

# Modulation without beam:

Typ. 9 kHz modulation to *B*-saturation  $\Rightarrow$  **no** net flux

- Modulation with beam:
  - Saturation reached at different times  $\Rightarrow$  net flux
- Net flux: Double frequency than modulation
- Feedback: Compensating current for large sensitivity
- Two magnetic cores: Must be very similar.

Resolution:  $I_{min} \approx 1 \ \mu A$  at 100 Hz Reason: Noisy orientation change of magnetic domain called Barkhausen noise

**Remark**: Same principle used for power suppliers





# The dc Transformer

## Working principle:

## Modulation without beam:

typ. 9 kHz modulation to *B*-saturation  $\Rightarrow$  **no** net flux

- Modulation with beam:
  - saturation reached at different times  $\Rightarrow$  net flux
- Net flux: double frequency than modulation
- Feedback: Compensating current for large sensitivity
- Two magnetic cores: Must be very similar.

| Torus radii           | r <sub>i</sub> = 135 mm r <sub>o</sub> =145 mm                 |
|-----------------------|----------------------------------------------------------------|
| Torus thickness       | d = 10 mm                                                      |
| Torus permeability    | $\mu_{\rm r} = 10^5$                                           |
| Saturation inductance | B <sub>sat</sub> = 0.6 T                                       |
| Number of windings    | 16 for mod.& sens. ,12 for feedback                            |
| Resolution            | I <sup>min</sup> <sub>beam</sub> = 2 μA                        |
| Bandwidth             | $\Delta f = dc \dots 20 \text{ kHz}, \tau_{rise} = 10 \ \mu s$ |
| Temperature drift     | 1.5 µA/⁰C                                                      |



#### Example: The DCCT at GSI synchrotron



# **Integrating Current Transformer ICT for short Pulses**



# Short, single pulse at FELs: Too short to be recorded by FCT due to rise time $\tau_{pulse} \ll \tau_{rise} \approx 1$ ns

⇒ depictive statement: 'analog stretching of signal information' yields charges per bunch



#### ICT operation principle for ps pulses:

- Image current on shell with gap
- Storage of induced charges at C<sub>int</sub>
- 'Slow' recombination of charges
- Sensing this current with FCT
   ⇒ stretched pulse, length
   independent on input → called ICT
- Torus1 for correct inductance: damped resonant circuit of entire devices
- ▶ Broad bandpass filter ⇒ ringing signal,
   to enlarge sensitivity →called Turbo-ICT





#### Typical parameter of a Turbo-ICT as used at FELs and Laser Plasma Accelerators:





#### Transformer: Measurement of the beam's magnetic field

- > Magnetic field is guided by a high  $\mu$  toroid
- > Types of transformers:

FCT for bunches:Broadband obseravtion,  $I_{min} \approx 30 \ \mu\text{A}$ , BW  $\approx 10 \ \text{kHz} \dots 500 \ \text{MHz}$ DCCT for dc beams:Two toroids + modulation,  $I_{min} \approx 1 \ \mu\text{A}$ , BW  $\approx \text{dc} \dots 20 \ \text{kHz}$ ICT short pulses:Image charge storage  $\rightarrow$  analog pulse stretching,  $Q_{min} \approx 10 \ \text{fC}$ , no timing

Non-destructive, used for all beams

# **Outline:**

- Button type for general purpose
- Linear-cut type for proton synchrotrons
- Cavity BPM for short pulses

# A Beam Position Monitor is an non-destructive device for bunched beams

## It delivers information about the transverse center of the beam:

- > Trajectory: Position of an individual bunch within a transfer line or synchrotron
- > Closed orbit: Central orbit averaged over a period much longer than a betatron oscillation
- > Single bunch position: Determination of parameters like tune, chromaticity,  $\beta$ -function
- **Remarks**: BPMs have a low cut-off frequency ⇔ dc-beam behavior can't be monitored - The abbreviation **BPM** and pick-up **PU** are synonyms



The image current at the beam pipe is monitored on a high frequency basis i.e. the ac-part given by the bunched beam.



Beam Position Monitor **BPM** is the most frequently used instrument!

For relativistic velocities, the transversal electric field is:  $E_{\perp,lab}(t_{lab}) = \gamma E_{\perp,rest}(t_{rest})$ 



# Principle of Signal Generation of a BPMs: off-center Beam



The image current at the wall is monitored on a high frequency basis i.e. ac-part given by the bunched beam. V 000000 Ð Animation by Rhodri Jones (CERN) 19 Peter Forck, ARD ST3, 19th Oct. 2019 **Tutorial: Beam Diagnostics** 



# The difference voltage between plates gives the beam's center-of-mass $\rightarrow$ **most frequent application**

'Proximity' effect leads to different voltages at the plates:



 $S(\omega,x)$  is called **position sensitivity**, sometimes the inverse is used  $k(\omega,x)=1/S(\omega,x)$ **s** is a geometry dependent, non-linear function, which have to be optimized Units: **S**=[%/mm] and sometimes **S**=[dB/mm] or **k**=[mm].

**Typical desired position resolution:**  $\Delta x \approx 0.3 \dots 0.1 \cdot \sigma_x$  of beam width





## **Button BPM Realization**





Courtesy C. Boccard (CERN)

# Simulations for Button BPM at Synchrotron Light Sources





**Result**: non-linearity and *xy*-coupling occur in dependence of button size and position



Frequency range: 1 MHz <  $f_{rf}$  < 100 MHz  $\Rightarrow$  bunch-length >> BPM length.



651

Technical realization at HIT synchrotron of 46 m length for 7 MeV/u $\rightarrow$  440 MeV/u BPM clearance: 180x70 mm<sup>2</sup>, standard beam pipe diameter: 200 mm.







Technical realization at HIT synchrotron of 46 m length for 7 MeV/u $\rightarrow$  440 MeV/u BPM clearance: 180x70 mm<sup>2</sup>, standard beam pipe diameter: 200 mm.



# **Cavity BPM for FEL-LINACs: Principle**





27

# **Cavity BPM: Example of Realization**







#### Suppression of mono-pole mode: waveguide that couple only to dipole-mode

due to  $f_{mono} < f_{cut} < f_{dipole}$ 



#### Prototype BPM for ILC Final Focus:

Achieved **resolution** (i.e. 3 BPM relative) of 8.7 nm in a  $6 \times 12$  mm beam pipe at ATF2 (KEK, Japan)

**Remark:** - Separated, smaller cavity for monopole mode to have **same** frequency for normalization - For typical proton beams **not** required due to long pulses  $t_{pulse} \gg 1 \mu s$ 

Courtesy of D. Lipka and Y. Honda Phys. Rev. Accel. Beams 11, 062801 (2008)

# Intermediate Summary: Comparison of BPM Types (simplified)



| Туре         | Linear-cut                          | Button                         | Cavity               |  |
|--------------|-------------------------------------|--------------------------------|----------------------|--|
| Usage        | p-synchrotron                       | p-LINACs,                      | e⁻LINACs (e.g. FEL)  |  |
|              |                                     | <b>all</b> e⁻acc.              |                      |  |
| Precaution   | Long bunches                        | Short bunches                  | Short pulses         |  |
|              | <i>f<sub>rf</sub></i> < 10 MHz      | <i>f<sub>rf</sub></i> > 10 MHz |                      |  |
| Advantage    | Large signal                        | Simple mechanics               | Very sensitive       |  |
|              | Very linear, no <b>xy-</b> coupling | Broadband                      | 'stores' information |  |
|              | For large beams                     |                                |                      |  |
| Disadvantage | Complex mechanics                   | Non-linear,                    | Very complex,        |  |
|              | horizontal                          | <i>x-y</i> coupling            | High frequency       |  |
|              | vertical                            |                                |                      |  |



- Precise electronics with low drifts to determine position within 10% of beam width

   → online calibration required e.g. permanently by 'pilot tone'
- Best performing digital signal processing to achieve highest resolution

uard rings on

# **Outline:**

- Scintillation screens and Optical Transition Radiation OTR screens
- Wire scanner and SEM-Grid
- Non destructive methods

Proton accelerators: Ionization Profile Monitor, Beam Induced Fluorescence Monitor Electron accelerators: Synchrotron Radiation Monitor

## Typical beam sizes:

e<sup>-</sup>-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm





#### Scintillation: Particle's energy loss in matter causes emission of light

 $\rightarrow$  the most direct way of profile observation  $\rightarrow$  used from the early days on & daily operation!



*Example:* Pneumatic drive with Ø70 mm phosphor screen



## Some materials and their basic properties:

| Name    | Туре                                             | Material                                           | Activ. | Max. λ | Decay  |
|---------|--------------------------------------------------|----------------------------------------------------|--------|--------|--------|
| Chromox | romox Cera-                                      | Al <sub>2</sub> O <sub>3</sub>                     | Cr     | 700nm  | ≈ 10ms |
| Alumina | mics                                             | Al <sub>2</sub> O <sub>3</sub>                     | Non    | 380nm  | ≈ 10ns |
| YAG:Ce  | Crystal                                          | Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub>     | Ce     | 550nm  | 200ns  |
| LYSO    |                                                  | Lu <sub>1.8</sub> Y <sub>.2</sub> SiO <sub>5</sub> | Ce     | 420nm  | 40ns   |
| P43     | P43 Powder<br>P46 of gains<br>Ø≈10μm<br>on glass | Gd <sub>2</sub> O <sub>3</sub> S                   | Tb     | 545nm  | 1ms    |
| P46     |                                                  | Y <sub>3</sub> Al <sub>5</sub> O <sub>12</sub>     | Ce     | 530nm  | 300ns  |
| P47     |                                                  | Y <sub>3</sub> Si <sub>5</sub> O <sub>12</sub>     | Ce&Tb  | 400nm  | 100ns  |

These scintillator have about factor 100 different light yield

## Properties of a good scintillator:

- $\blacktriangleright$  Optical wavelength  $\rightarrow$  standard CCD can be used
- $\succ$  Large dynamic range  $\rightarrow$  usable for different currents
- $\blacktriangleright$  Short decay time  $\rightarrow$  observation of variations
- $\succ$  Large radiation hardness  $\rightarrow$  long lifetime
- $\succ$  Good mechanical properties → typ. size up to Ø 10 cm



# Limitation scintillation Screens: High Ionization Density

#### **Observation:**

"Smoke-ring" shaped profiles @ XFEL for LYSO:Ce scintillator  $\rightarrow$  wrong measure!

#### Possible explanation:

- Ionization channel related to secondary electron range
- Quenching of fluorescence close to electron track
  - $\Rightarrow$  Important for high flux beam (high current, short bunch & transversally focused
- > Depends on scintillator material, e.g. YAG:Ce might be better



#### Proton beam image deformation due to:

- High ionization density leads to thermal quenching and saturation
- Radiation damage!

 $\Rightarrow$  Careful choice of scintillation material in dependence of application

Peter Forck, ARD ST3, 19th Oct. 2019

#### 34

#### *Example:* XFEL, 14 GeV, 1 nC/bunch, $\sigma \approx 100 \ \mu m$





# **Optical Considerations for small Beam Measurement**



#### **Optics: Old principles & recent realization**

- Scheimpflug principle:
   object, image & lens plane coincide in one point
   + tele-centric lens
  - $\Rightarrow$  sharp focus & no image deformation
- Screen thickness ≈100 µm > ≈10 µm beam (thickness given by free-standing crystal)
   ⇒ optimal angle depends on index of refractivity
   ⇒ condition for angle beam ↔ observation







FELs: Suppression of coherent OTR (see below)
 ⇒ optimal angle depends beam energy

**Remark:** Coherent OTR occurs for high intensities if wavelength  $\approx$  bunch size (long.or trans.)

Courtesy S. Gibson RHUL, R. Ischebeck PSI, Phys. Rev. ST Accel. Beams 18, 082802

# **Optical Considerations for small Beam Measurement**

## **Optics: Old principles & recent realization**

- Scheimpflug principle:
   object, image & lens plane coincide in one r
   + tele-centric lens
  - $\Rightarrow$  sharp focus & no image deformation
- Screen thickness ≈100 µm > ≈10 µm beam (thickness given by free-standing crystal)
   ⇒ optimal angle depends on index of refractivity
   ⇒ condition for angle beam ↔ observation LYS 200



➢ FELs: Suppression of coherent OTR (see below)
 ⇒ optimal angle depends beam energy

Courtesy S. Gibson RHUL, R. Ischebeck PSI, Phys. Rev. ST Accel. Beams 18, 082802



ple: DESY XFEL design



eders DESY, M. Verones ELETTRA

D



Scheimpflu
### **Optical Transition Radiation: Depictive Description**



### **Optical Transition Radiation OTR for a single charge** *e*:

Assuming a charge *e* approaches an ideal conducting boundary e.g. metal foil

- Image charge is created by electric field
- Dipole type field pattern
- > Field distribution depends on velocity  $\beta$  and Lorentz factor  $\gamma$  due to relativistic trans. field increase
- Penetration of charge through surface within t < 10 fs: sudden change of source distribution</p>
- Emission of radiation with dipole characteristic



sudden change charge distribution rearrangement of sources ⇔ radiation

Other physical interpretation: Impedance mismatch at boundary leads to radiation

### **Optical Transition Radiation: Depictive Description**



#### **Optical Transition Radiation OTR can be described in classical physics:**

approximated formula for normal incidence & in-plane p<u>olarization:</u>



Angular distribution of radiation in optical spectrum:

- $\succ$  Lope emission pattern depends on velocity or Lorentz factor  $\gamma$
- > Emitted energy i.e. amount of photons scales with  $W \propto \beta^2$
- Broad wave length spectrum up to plasma frequency
- $\Rightarrow$  suited for medium and high energy electrons





sudden change charge distribution rearrangement of sources ⇔ radiation

 $\frac{d^2 W}{d\theta \, d\omega} \approx \frac{2e^2\beta^2}{\pi \, c} \cdot \frac{\sin^2\theta \cdot \cos^2\theta}{\left(1 - \beta^2 \cos^2\theta\right)^2}$ 



### OTR is emitted by charged particle passage through a material boundary. Photon distribution: within a solid angle $d\Omega$ and $\frac{dN_{photon}}{d\Omega} = N_{beam} \cdot \frac{2e^2\beta^2}{\pi c} \cdot \log\left(\frac{\lambda_{begin}}{\lambda_{end}}\right) \cdot \frac{\theta^2}{(\gamma^{-2} + \theta^2)^2}$ Wavelength interval $\lambda_{begin}$ to $\lambda_{end}$

- ➢ Detection: Optical 400 nm < λ < 800 nm using image (intensified) CCD
- $\blacktriangleright$  Larger signal for relativistic beam  $\gamma >> 1$
- ▶ Low divergence for  $\gamma >> 1 \Rightarrow$  large signal
- $\Rightarrow$  well suited for e<sup>-</sup> beams

 $\Rightarrow$  p-beam only for  $E_{kin}$  > 100 GeV  $\Leftrightarrow \gamma$  > 100

### Advantage:

- $\succ$  Thin foil  $\Rightarrow$  low heating & straggling
- 2-dim image visible

### **Remark: Comparable processes**

- Optical diffraction radiation ODR
- Smith–Purcell radiation from gridstructure



coated with  $0.1\mu m$  Al

### **Optical Transition Radiation compared to Scintillation Screen**





Peter Forck, ARD ST3, 19th Oct. 2019



**Reason:** Coherent emission **if** bunch length  $\approx$  wavelength ( $t_{bunch}$ =2 fs  $\Leftrightarrow$   $I_{bunch}$ =600 nm)

or bunch fluctuations ≈ wavelength Parameter reach for most LINAC-based FELs!

Beam parameter: FLASH, 700 MeV, 0.5 nC, with bunch compression OTR screen scint. screen





(c) LuAG screen



prompt emission for OTR and scint. screen
→ coherent and in-coherent OTR

 100 ns delayed emission
 → no OTR as expected (classical process)
 → emission by scint. screen due to lifetime ⇔ correct profile image!

Contrary of M. Yan et al., DIPAC'11 & S. Wesch, DIPAC'11

(b) OTR screen, +100ns delay



**OTR:** electrodynamic process  $\Rightarrow$  beam intensity linear to # photons, high radiation hardness

**Scint. Screen:** complex atomic process  $\Rightarrow$  saturation possible, for some low radiation hardness

**OTR:** thin foil Al or Al on Mylar, down to 0.25 µm thickness

 $\Rightarrow$  minimization of beam scattering (Al is low Z-material e.g. plastics like Mylar)

Scint. Screen: thickness down to 100 µm inorganic, fragile material, not always radiation hard

**OTR:** low number of photons (energy dependent)  $\Rightarrow$  expensive image intensified CCD

**Scint. Screen:** large number of photons  $\Rightarrow$  simple CCD sufficient

**OTR:** complex angular photon distribution  $\Rightarrow$  resolution limited

**Scint. Screen:** isotropic photon distribution  $\Rightarrow$  simple interpretation

**OTR**: large  $\gamma$  needed  $\Rightarrow$  e<sup>-</sup>-beam with  $E_{kin}$  > 100 MeV, proton-beam with  $E_{kin}$  > 100 GeV **Scint. Screen**: for all beams

**Remark:** OTR questionable for LINAC-FEL due to **coherent** light emission .

### Beam surface interaction: e<sup>-</sup> emission proportional to energy loss

Example: 15 wire spaced by 1.5 mm:



At  $e^-$  LINACs not used as too large pitch.

SEM-Grid feed-through on CF200:



### **Slow, linear Wire Scanner**



### Idea: One wire is scanned through the beam!

Wire diameter 1  $\mu$ m <  $d_{wire}$  < 100  $\mu$ m

### Slow, linear scanner are used for:

- Low energy proton cw-beam
- ➢ High resolution for e<sup>−</sup> beam as reference method by de-convolution  $\sigma^2_{beam} = \sigma^2_{meas} - d^2_{wire}$  $\Rightarrow$  resolution down to 1 µm range can be reached



Scanners used as reference method!



### In a synchrotron <u>one</u> wire is scanned though the beam as fast as possible.

Fast pendulum scanner for synchrotrons; sometimes it is called 'flying wire':





From <u>https://twiki.cern.ch/twiki/</u> bin/viewauth/BWSUpgrade/

1.5

### Usage of Flying Wire Scanners at Proton Synchrotrons



*Material:* Carbon or SiC  $\rightarrow$  low Z-material for low energy loss and high temperature. *Thickness*: Down to 10  $\mu$ m  $\rightarrow$  high resolution.

Detection: High energy secondary particles with a detector like a beam loss monitor

#### Secondary particles:

**Proton beam**  $\rightarrow$  hadrons shower ( $\pi$ , n, p...) **Electron beam**  $\rightarrow$  Bremsstrahlung photons.





25000

#### **Kinematics of flying wire:**

Velocity during passage typically 10 m/s = 36 km/h and

typical beam size  $\varnothing$  10 mm  $\Rightarrow$  time for traversing the beam  $t \approx$  1 ms

Actual challenges: Thin wire stability for fast movement with high acceleration,

thermal stability due to large beam power

U. Raich et al., DIPAC 2005

Kinetic energy (MeV)

### **Comparison between SEM-Grid and <u>slow</u> Wire Scanners**

**Grid:** Measurement at a single moment in time

**Scanner:** Fast variations can not be monitored

 $\rightarrow$  for pulsed LINACs precise synchronization is needed

**Grid:** Not adequate at synchrotrons for stored beam parameters

Scanner: At high energy synchrotrons flying wire scanners are nearly non-destructive

**Grid:** Resolution of a grid is fixed by the wire distance (typically 1 mm)

Scanner: For slow scanners the resolution is about the wire thickness (down to 10 μm)

 $\rightarrow$  used for e--beams having small sizes (down to 10  $\mu$ m)

**Grid:** Needs one electronics channel per wire

 $\rightarrow$  expensive electronics and data acquisition

**Scanner:** Needs a precise movable feed-through  $\rightarrow$  expensive mechanics.

### **Ionization Profile Monitor at GSI Synchrotron**



Non-destructive device for proton synchrotron:
> beam ionizes the residual gas by electronic stopping
> gas ions or e<sup>-</sup> accelerated by E -field ≈1 kV/cm

spatial resolved single particle detection



Typical vacuum pressure:

Transfer line: N<sub>2</sub> 10<sup>-8</sup>...10<sup>-6</sup> mbar  $\cong$  3.10<sup>8</sup>...3.10<sup>10</sup> cm<sup>-3</sup> Synchrotron: H<sub>2</sub> 10<sup>-11</sup>...10<sup>-9</sup> mbar  $\cong$  3.10<sup>5</sup>...3.10<sup>7</sup> cm<sup>-3</sup> Realization at GSI synchrotron: One monitor per plane





### The realization for the heavy ion storage ring ESR at GSI: Realization at GSI synchrotron:



### **Ionization Profile Monitor Realization**







### **Electron Detection and Guidance by Magnetic Field**







e<sup>-</sup> detection in an external magnetic field  $\rightarrow$  cyclotron radius  $r_C = \frac{mv_\perp}{eB}$ for  $E_{kin,\perp} = 10 \text{ eV} \& B = 0.1 \text{ T} \Rightarrow r_c \approx 100 \text{ }\mu\text{m}$  $E_{kin}$  from atomic physics,  $\approx 100 \ \mu m$  resolution of MCP

**Time-of-flight:**  $\approx 1 - 2$  ns  $\Rightarrow 2 - 3$  cycles. **B-field**: Dipole with large aperture  $\rightarrow$  IPM is expensive & large device!

# Ion detection mode:

### **Example for Space Charge Broadening at IPMs**



# Example for SIS18, length C = 216 m: 500 MeV/u with typical SIS18 parameters $H_2^+$ detection:

Extr.:  $\sigma_{long} = 25 \text{ ns}$   $\sigma_{trans} = 2.3 \text{ mm}$   $t_{drift} = 220 \pm 15 \text{ ns}$   $\Rightarrow$  broadening for  $N > 10^{10}$ /bunch e<sup>-</sup> detection:

 $t_{drift}$ = 4.5±1 ns  $\Rightarrow$  no broadening









⇒ high intensities needs guiding magnetic field of  $B \approx 100$  mT







### Magnetic field for electron guidance:

Maximum image distortion:

5% of beam width  $\Rightarrow \Delta B/B < 1\%$ 

#### Challenges:

- High B-field homogeneity of 1%
- Clearance up to 50 cm
- Correctors compensating by beam steering
- Insertion length up to 2.5 m incl. correctors

### **Actual Challenges for IPM:**

- MCP single particle detector lifetime and calibration Alternative: Silicon pixel detector
- Turn-by-turn readout due to low signal Goal: e.g. control of transverse injection matching
- > Correction of space charge broadening e.g. by machine learning for image reconstruction **Electron beams**: Resolution of 50  $\mu$ m is insufficient, but sometimes used for photon beams



B = 250 mT
Gap 220 mm
Profile 32 strips
2.5 mm width

### **Beam Induced Fluorescence BIF Monitor**



### Detecting *photons* from residual gas molecules, e.g. Nitrogen

 $N_2 + Ion \rightarrow (N_2^+)^* + Ion \rightarrow N_2^+ + \gamma + Ion$ 

390 nm< λ< 470 nm

emitted into solid angle  $\Omega$  to camera single photon detection scheme

#### Advantage:

- Nearly no installation inside vacuum
- High resolution (here 0.2 mm/pixel)
   can be matched to application by optics
   Commercial in
- Commercial Image Intensifier
  Disadvantage:
- $\blacktriangleright$  Low signal strength,  $\approx 10^{-4}$  of IPM
- ➢ Pressure bump up to 10<sup>-6</sup> mbar required

#### Usage:

At high power proton LINACs,

e.g. GSI-UNILAC, ESS normal conducting  $E_{kin} \leq$  90 MeV

### Actual challenge:

- Best performing gases, e.g. neutral Ne at 585 nm
- Space charge influence correction



Beam:  $Ar^{10+}$  at 4.7 MeV/u, I=2.5 mA,  $10^{11}$  ppp, p= $10^{-5}$  mbar

54



#### An electron bent (i.e. accelerated) by a dipole magnet emit synchrotron light



### **Realization of a Synchrotron Radiation Monitor**

GSľ

Extracting out of the beam's plane by a (cooled) mirror

- $\rightarrow$  Focus to a slit + wavelength filter for optical wavelength
- ightarrow Image by sensitive camera

**Example:** ESRF monitor from dipole with bending radius 22 m (blue or near UV)



### **Diffraction Limit of Synchrotron Light Monitor**





### GSľ

#### Different techniques are suited for different beam parameters:

e<sup>-</sup>-beam: typically Ø 0.01 to 3 mm, protons: typically Ø 1 to 30 mm

Intercepting ↔ non-intercepting methods (proton beams might have high beam intensity)

#### **Direct observation of electrodynamics processes:**

- > Synchrotron radiation monitor: non-destructive  $\rightarrow e^-$ -beams, complex
- > OTR screen: nearly non-destructive, large relativistic  $\gamma$  needed  $\rightarrow e^-$ -beams mainly

#### **Detection of secondary photons, electrons or ions:**

- > Scintillation screen: destructive, large signal, simple setup  $\rightarrow$  all beams
- > IPM & BIF: non-destructive, expensive, limited resolution  $\rightarrow$  for high intensity protons

#### Wire based electronic methods:

- SEM-grid: partly destructive, large signal and dynamic range, limited resolution
- > Wire scanner: partly destructive, large signal and dynamics, high resolution, slow scan.

### **Outline:**

- Bunch length at non-relativistic proton LINACs
- Bunch length at FEL LINACs
  - electro-optical methods
  - transverse deflecting cavities

**Remark:** At proton synchrotrons the accelerating frequency is normally  $f_{rf} \lesssim 10$  MHz

 $\Rightarrow$  bunch shape can be measured by Fast Current Transformer



### Bunch Structure at low *E<sub>kin</sub>*: Not possible with Pick-Ups



#### Pick-ups are used for:

- precise for bunch-center relative to rf
- course image of bunch shape

#### **But:**

For  $\beta \ll 1 \rightarrow \text{long.} E$ -field significantly modified:





Example: Calculation of transverse eclectic field



*Example*: Comparison pick-up – particle counter:

Ar beam of 1.4 MeV/u ( $\beta$  = 5.5%) ,  $f_{rf}$  = 108 MHz



 $\Rightarrow$  the pick-up signal is insensitive to bunch 'fine-structure'

### Bunch Structure using secondary Electrons for low Ekin Protons





SEM: secondary electron multiplier

### Bunch Structure using secondary Electrons for low Ekin Protons





62  $\rightarrow$  conclusion



**FELs**  $\rightarrow$  **bunch length below 1 ps is achieved**, i.e. below the resolution of streak camera  $\succ$  Short laser pulses with  $t \approx 10$  fs and electro-optical modulator **Electro optical modulator:** birefringent, rotation angle depends on external electric field **Relativistic electron bunches**: transverse field  $E_{\perp}$  and  $E_{\perp}$  are carries the time information.



### Hardware of a compact EOS Scanning Setup





**Example**: Bunch length at FLASH 100 fs bunch duration = 30 μm length



B. Steffen et al, DIPAC 2009B. Steffen et al., Phys. Rev. AB 12, 032802 (2009)



#### Transversal deflection of the bunch i.e. time-to-space conversion



Size of the streak given by

$$\sigma_{y} = \sqrt{\sigma_{y0}^{2} + R_{35} \cdot k \cdot \sigma_{z}^{2}}$$

k is determined by the rf-power  $k = \frac{2\pi e \cdot U_{rf}}{\lambda_{rf}E}$ 



#### From D. Xiang et al., IPAC'12

### **Bunch Length by rf-Deflection: Hardware**



Peter Forck, ARD ST3, 19th Oct. 2019

66  $\rightarrow$  conclusion





#### Diagnostics is required for operation and development of accelerators

#### Several categories of demands leads to different installations:

- Quick, non-destructive measurements leading to a single number or simple plots
- Complex instrumentation used for hard malfunction and accelerator development
- > Automated measurement and control of beam parameters i.e. feedback

The goal and a clear interpretation of the results is a important design criterion.

#### **General comments:**

- > Quite different technologies are used, based on various physics processes
- > Accelerator development goes parallel to diagnostics development

#### Further instruments and diagnostic methods:

- Beam Loss Monitors, bunch shape monitors, laser-based methods for e<sup>-</sup> & H<sup>-</sup>, luminosity monitors....
- Diagnostics for closed orbit & lattice parameters, Schottky analysis.....

## **Thank you for your attention!**



## **Backup slides**

### Laser Scanner: Principle for H<sup>-</sup> Beams







Y. Liu (SNS) et al., NIM A 238, 241 (2010), R.Connolly et al., Proc. LINAC'02

### Laser Scanner: Detection Scheme for H<sup>-</sup> at SNS-LINAC



### **SNS installation:**

- Nd:YAG ( $\lambda_{lab}$ =1064 nm, 100 mJ, 7ns)
- One of 9 stations is served at a time
- $\blacktriangleright$  Laser with spot size: 10 to 50  $\mu$ m
- $\succ$  e<sup>-</sup> separation by **B**  $\approx$  20 mT
- Detection with Faraday Cup



Electron collector

Dipole magnet

Y. Liu (SNS) et al., NIM A 238, 241 (2010),Y. Liu (SNS) et al., Phys. Rev Accel. Beams 16, 2013)





#### 'Inverse' Compton Scattering by photon scattered at high energy electron:

Calculation: Regular Compton scattering in e<sup>-</sup> rest frame & Lorentz Transformation to lab-frame  $\Rightarrow$  Increase of photon energy by  $\gamma^2$  for 90° scattering  $hv_{sc} = 2\gamma^2 \cdot hv_0$  i.e. up to GeV Detection by  $\gamma$ -ray detector e.g. thick scintillator



### Laser Wire Scanner at PETRA III at DESY: Installation





Peter Forck, ARD ST3, 19th Oct. 2019
# **Model for Signal Treatment of capacitive BPMs**



At a resistor  $\boldsymbol{R}$  the voltage  $\boldsymbol{U}_{im}$  from the image current is measured.

Goal: Connection from beam current to signal strength by transfer impedance  $Z_t(\omega)$ 

in frequency domain:  $U_{im}(\omega) = R \cdot I_{im}(\omega) = Z_t(\omega) \cdot I_{beam}(\omega)$ 



# **Example of Transfer Impedance for Proton Synchrotron**



## The high-pass characteristic for typical synchrotron BPM:



Large signal strength for long bunches  $\rightarrow$  high impedance Smooth signal transmission important for short bunches  $\rightarrow$  50  $\Omega$ **Remark:** For  $\omega \rightarrow 0$  it is  $Z_t \rightarrow 0$  i.e. **no** signal is transferred from dc-beams e.g.

- de-bunched beam inside a synchrotron
- for slow extraction through a transfer line



### **Test of different scintillators**

Tpy. scintillators  $\leftrightarrow$  Phosphor powder  $\leftrightarrow$  ceramics

Example: Irradiation with ions at GSI

> Light yield:

Very different brightness (here factor 1000) Still linear with beam current even for large doses

## > Profile:

Most materials show correct results

Deviation understood and possible cures discussed

Accelerators: ⇒ Material choice matched to beam Radiation hardness tests

**Example:** Irradiation with 0.5 MeV/u and 300 MeV/u

- Damage by irritation depends strongly on ion type and energy
- Model calculations discussed with experts

#### Accelerators:

 $\Rightarrow$  Important finding for target diagnostics at SNS or ESS

Corutesy B. Walasek-Höhne GSI



## X-ray Pin-Hole Camera



# The diffraction limit is $\Rightarrow \sigma \cong 0.6 \cdot (\lambda^2 / \rho)^{1/3} \Rightarrow$ shorter wavelength by X-rays.



Peter Forck, ARD ST3, 19th Oct. 2019

76  $\rightarrow$  conclusion

# **Secondary Electron Emission by Ion Impact**



## **Energy loss of ions in metals close to a surface:**

Closed collision with large energy transfer:  $\rightarrow$  fast e<sup>-</sup> with  $E_{kin} >> 100 \text{ eV}$ 

Distant collision with low energy transfer :  $\rightarrow$  slow e<sup>-</sup> with  $E_{kin} \leq 10 \text{ eV}$ 

- $\rightarrow$  'diffusion' & scattering with other e<sup>-</sup>: scattering length  $L_s \approx 1 10$  nm
- $\rightarrow$  at surface  $\approx$  90 % probability for escape

Secondary **electron yield** and energy distribution comparable for all metals!

 $\Rightarrow$  **Y** = const. \* dE/dx (Sternglass formula)

