Pulse- and field-resolved THz diagnostics and intrinsic synchronization at TELBE

Min Chen

Min Chen • m.chen@hzdr.de • www.hzdr.de • HZDR

Mitglied der Helmholtz-Gemeinschaft

Content

- Motivation
- Introduction of TELBE
- Pulse- resolved DAQ system
- Pulse- and field- resolved DAQ system
- Intrinsic synchronization technique
- Summary and outlook

Motivation

TELBE user facility

TELBE – superradiant THz facility

- \rightarrow High pulse energy (up to 12 µJ)
- \rightarrow Narrow band source (10% bandwidth)
- \rightarrow High repetition rate (up to 13 MHz)

start of early-stage user operation: 08/2016

TELBE sources

Data Sorting Technique

S. Kovalev et al., Struct. Dyn. 4, 024301 (2017)

Pulse- and field- resolved DAQ system

Two sources are highly but not completely synchronized

Limitations of single ATM

- Electron bunch fluctuation
- Beamline ambient difference
- Unclear jitter

Benefits of double ATM

- Higher temporal resolution
- Measure undulator pulse directly
- Enables pulse and field-resolved photon diagnostics

Exp.

M. Chen, et al., Optics Express (2019), accepted

Determine arrival time from SD trace

- Determine peak searching window of Undulator ATM by readout of CDR ATM (Coarse)
- Read out undulator pulses intensity through peak amplitude

- Quasi-linear relationship between τ_1 and τ_2
- Broadening effect due to jitter between CDR and undulator source

M. Chen, et al., Optics Express (2019), accepted

• Short-term performance (single loop, 5 mins)

Long-term performance (10 loops, 30 mins)

Data are sorted but not binned

Data are sorted and binned

• Avoid CDR-undulator jitter.

• Temp. drifts of beamlines.

• Temporal resolution is estimated by RMS distribution of data points around zero-crossing positions

M. Chen, et al., Optics Express (2019), accepted

Mitglied der Helmholtz-Gemeinschaf

Correlation between Arrival time difference and undulator pulse intensity

$\Delta \tau$ vs. undulator intensity level

- Δτ: arrival time difference between CDR and undulator pulse
- Undulator intensity level: read out from undulator ATM
- Increase timing accuracy by decreasing pulse intensity correlated arrival time shift
- **!!!Could be a new diagnostic tool investigating** electron energy charge dispersion between undulato and CDR source **!!!**

M. Chen, et al., Optics Express (2019), accepted

EOS trace binned with different undulator intensity level

DRESDEN

CONCED

Mitglied der Helmholtz-Gemeinschaft

Limitations of the current arrival time monitor scheme

Rep. rate is limited by the ATM speed (currently @ 100 kHz)
Consumes large storage and computing resources

Intrinsic synchronization scheme

Advantages of Intrinsic synchronization

- Enable experiment requires high rep. rate (i.e. SNOM)
- Real time experiment
- Save spending on the big data technique

: Intrinsic synchronization

Experimental scheme

Undulator tune to 500 GHz
3 EOS measurements probed with sliced pulse

EOS, Spectrum @ 500 GHz, with 500 GHz BP filter

Spectrum of EOS measurements under three different frequences

- Online diagnostic can provide now sub-10 fs timing precision at high repetition rate
- Suppress temperature drifts, jitter between two THz sources
- New diagnostic tool for investigating origin of different instabilities
- Demonstrated intrinsic synchronization between CDR and fs laser
- Compress the sliced pulse further
- Optimize the CDR pulse shape for high efficiency slicing
- Use Fourier-transform-limited pulse for intrinsic synchronization

Acknowledgement

Michael Gensch

Jan Deinert

Bert Green

Zhe Wang

Igor Ilyakov

Thales de Oliveira

Nilesh Awari

Semyon Germanskiy Mohammed Bawatna

Comparision between techniques

Feature	Single ATM	Double ATM	Intrinsic syn.
Temporal resolution, long term	50 fs (RMS)	22 fs (RMS)	almost jitter free
Temporal resolution, short term	6 fs (RMS)	4 fs (RMS)	almost jitter free
Pump pulse diagnostic (intensity, waveform)	No	Yes	No
Intensity correlated jitter	200 fs (RMS)	<25 fs (RMS)	200 fs (RMS)
Repetition rate	Current 100 KHz (Up to 140 kHz)	Current 100 KHz (Up to 140 kHz)	Up to MHz
Big data infrastructure	Required	Required	Not Required
Real-time lock-in experiment	No	No	Yes
Target experiment type (example)	High frequency HHG	High frequency HHG	SNOM Low frequency HHG

Table-top experiment

- Delay A: emulate jitter source
- Single cycle THz pulse: emulated CDR pulse

M. Chen, et al., Optics letters 43, 2213-2216 (2018)

Experimental result

M. Chen, et al., Optics letters 43, 2213-2216 (2018)

Table-top experiment

- Delay A: emulate jitter source
- Single cycle THz pulse: emulated CDR pulse

M. Chen, et al., Optics letters 43, 2213-2216 (2018)

Experimental result

• Jitter compensation from 1.2 ps to 15 fs • EOS measurement bandwidth up to 1 THz

Spectral encoding setup

Taken from S. M. Teo et al, Rev. Sci. Instrum. 561, 86, 051301 (2015)

EOS, Spectrum @ 500 GHz, without BP filter

EOS, Spectrum @ 1 THz, with BP filter

Sliced pulse probe

EOS measurements comparison

• Large time drift between EOS measurements

• No time drift between EOS measurements

改变时间轴

Mitglied der Helmholtz-Gemeinschat

Min Chen • m.chen@hzdr.de • www.hzdr.de • HZDR

M. Chen, et al., Optics letters 43, 2213-2216 (2018)

characterization of sliced pulse

Correlation between pulse duration and spectrum
 Optimized aligned pulse duration in 280 fo (BMS)

Optimized sliced pulse duration is 280 fs (RMS)

