Azimuthal decorrelation of forward jets

The correlation in the azimuthal angle Φ between the scattered electron and the forward jet in DIS - signature of the BFKL dynamics (?)

• Quark Parton Model e + q \rightarrow e + q, simple 2-body kinematics $\Delta \Phi = \Phi_{el} - \Phi_{fi} = \pi$

- As the distance in rapidity (Y = ln (xjet/xb_{BJ}) between the scattered electron and the forward jet grows the probability of multi – gluon emissions is increased
- O(α_sⁿ) processes NLOJET++ calculations
 calculation of ΔΦ in NLO BFKL , F. Schwennsen (PhD, 2007)
 MC models with different QCD evolution schemes

```
Forward jets
2000 data , L = 51.5 \text{ pb-1},
                                         Inclusive k<sub>t</sub>- algorithm in the Breit frame
         trigger S61
                                                                                boost to LAB
            DIS cuts
                                         Selection of high energy and high p<sub>t</sub> jets close
                                          to the proton, all cuts in LAB
  5.0 < Q^2 < 85 \text{ GeV}^2
  0.1 < y < 0.7
                                                                  7^\circ < \Theta_{iet} < 20^\circ
  0.0001 < x<sub>Bi</sub> < 0.004
                                                                 P<sub>t,jet</sub> > 5.0 GeV (!)
   156^{\circ} < \Theta_{el} < 175^{\circ}
                                                                x_{jet} = E_{jet}/E_{P} > 0.035
    E<sub>el</sub> > 10 GeV
                                                                 0.5 < p_t^2 / Q^2 < 5.0
  + standard technical cuts
                                                        ~ 20 000 forward jet events
```

1

<cos 2ΔΦ>

(HERA LAB frame, forward jets with ZEUS cuts)

- The forward jet more decorrelated from the scattered electron for larger rapidity difference (center of mass energy)
- The azimuthal angle correlations increase when HO corrections are included for a fixed value of x_{Bi}
- Some angular deccorelation exits even for very small Y

dδ/dΔΦ

Cross sections corrected to hadron level

statistical errors + systematic errors from the model dependence

Experimental problems :

Large trigger and detector corrections at $\Delta\Phi\sim\pi$

mainly for small separation in rapidity between the forw. jet and the scattered electron,

from the contribution of **QPM-like** events to forward jet sample

QED radiation from the lepton :

- \rightarrow measured y higher than real one
- \rightarrow forward jet from the struck quark

Trigger efficiency (S61)

Detector corrections (Django and RAPGAP)

Comparison to QCD models

Monte Carlo generators, DJANGO and RAPGAP dir, do not describe well the shape and the magnitude of the cross sections

Remove background from QED radiation : make cuts on kinematic variables $y_{e\Sigma} - y_e$, $(y_{e\Sigma} - y_e)/y_{e\Sigma}$, etc

> $y_{e\Sigma} - y_{e} > -0.2$ ($y_{e\Sigma} - y_{e} / y_{e\Sigma}$) > -1.0

lose ~10% of events in data
(cuts need tuning)

- \rightarrow better trigger efficiency
- \rightarrow better detector corrections

Trigger efficiency

Cuts on y variables – improvement in the trigger efficiency $\sim \Delta \Phi = \pi$

• cross sections in $\Delta \Phi$:

clean experimental data sample (improve trigger efficiency, detector corrections)

- determination of the dependence of $\langle \cos 2 \cdot \Delta \Phi \rangle vs. \ln(xjet / x_{BJ})$ and comparison with NLO BFKL predictions (contact F. Schwennsen)
- studies of topologies with the forward jet and additional hard jet in the central region
- calculation of other systematic uncertainties in progress
- comparison with RAPGAP (direct + resolved components) and CASCADE
- comparison with NLOJET++ predictions

Additional slides

Efficiency of the subtrigger S61

Main contribution from track trigger elements

Efficiency of the subtrigger S61

Efficiency of the subtrigger S61

