The LUXE experiment

Marius Hoffmann^{1,2}

FLC Group Meeting 06.05.2019

DESY, Hamburg
 ² University of Freiburg

Introduction and Motivation

Probing the Schwinger limit

J. Schwinger On Gauge Invariance and Vacuum Polarization Phys. Rev. 82 (1951) 664

QED becomes non-perturbative if field strength of an electric field exceeds Schwinger limit:

$$\varepsilon_{Schwinger} = \frac{{m_e}^2 c^3}{\hbar e} = 1.3 \times 10^{18} \text{ V/m}$$

Pair production in vacuum possible if

 $\varepsilon > 2 \times \varepsilon_{Schwinger}$

not measured in experiment

pair production by a single photon decay

- Impossible in vacuum → violation of energy/momentum conservation
- possible in presence of a strong field

not measured in controlled environment

DESY. | LUXE Experiment | Marius Hoffmann, FLC - Group Meeting - 06.05.2019

Introduction and Motivation

Why is this Interesting?

hawking radiation

Energy needed to create on-shell e⁺e⁻ pair: $\Delta E = 2mc^2$ Grav. Field near the event horizon: $F = \frac{G_N Mm}{r_s^2}$ Schwarzschild radius $r_s = \frac{2G_N M}{c^2}$. => $F = \frac{mc^4}{4G_N M}$ Energy to separate pair: $E = Fd_{min} = \frac{mc^4}{4G_N M} \times \frac{\hbar}{mc} = \frac{\hbar c^3}{4G_N M}$

Hawking radiation possible if virtual pair becomes real, i.e. $\frac{\hbar c^3}{4G_NM} > 2mc^2$

Other physics areas where strong fields are of interest

- neutron stars
- Condensed matter physics (dielectric breakdown)
- future e⁺e⁻ colliders

Physics processes at LUXE

DESY. | LUXE Experiment | Marius Hoffmann, FLC - Group Meeting - 06.05.2019

LUXE Page 4

Introduction and Motivation

Probing the Schwinger limit with a high energy photon beam

- 1.3×10^{18} V/m not reachable with current technology (lightning in air: 3×10^{6} V/m)
- to probe the schwinger limit:
 - high intensity laser field
 - high energy photon (or electron) beam

Non-relativistic photons: $I_1 = 2 \times 10^{29} \text{ W/cm}^2$

European XFEL: $E_v = O(10 \text{ GeV})$; $I_L \ge 10^{20} \text{ W/cm}^2$

First experiment to reach the critical field

One photon pair production (OPPP)

Introduction and Motivation

OPPP in principle allows the measurement of the schwinger critical field value

"Laser Und European XFEL Experiment"

European XFEL facts:

- 3.4 km long facility
- 17.5 GeV
- highest energy electron accelerator in operation worldwide

XTD-20, at the end of the linac

DESY. | LUXE Experiment | Marius Hoffmann, FLC - Group Meeting - 06.05.2019

LUXE Page 9

XTD-20, at the end of the linac

General Layout

Kick out **one** bunch and send it to the experimental area.

LUXE – Experimental Layout

Photon-Photon Interaction

The LUXE - Team

At FLC and beyond

FLC: Jenny List, Oleksandr (Sasha) Borysov, Marina Borysova, Marius Hoffmann M: Florian Burkart, Winfried Decking, Evgeny Negodin Theory: Andreas Ringwald

ATLAS: Beate Heinemann

Matthew Wing, Anthony Hartin

תרוז

Halina Abramowicz, Aharon Levy

Andreas Maier

Massimo Altarelli

Noam Hoad

Nina Elkina, Christian Rödel, Harsh Harsh,
Felipe Salgado, Thomas Teter, Matt Zepf

DESY. | LUXE Experiment | Marius Hoffmann, FLC - Group Meeting - 06.05.2019

The LUXE - Team

At FLC and beyond

At FLC: Jenny List, Oleksandr (Sasha) Borysov, Marina Borysova, Marius Hoffmann

LUXE: Setup

Photon Beam Generation with GEANT4

Sasha

- For now assuming gaussian beam
- Tungsten Target 35 µm (= 1% X0)
- Foil 5m in front of Laser Interaction Point (IP)
- At Laser IP: Photons inside an area of 25 x 25 µm around the IP

Different step

LUXE: Setup

Monte Carlo Simulation of Beam Interactions

Tony Hartin

- Monte Carlo PIC code for both Electron-Photon and Photon-Photon Interaction
- Input: XFEL Electron Beam / GEANT4 Photon Beam
- Output: all generated and propagated photons/electrons/positrons
- Data for stage 0 of OPPP, while stage 1 is still not possible

Parameter	value
E _e [GeV]	17.5
Laser Energy [J]	5 values: 0.2, 0.35, 0.5, 0.7, 1.0
Pulse length [fs]	35 (gaussian)
Pulse width [um]	5
Beam width [um]	5
#e/bunch	6.25e9
Xing angle	0.3 radians (17 degrees)

Design Laser Parameters				
Energy[J]	0.35	7.0		
Power[TW]	10	200		
Intensity[W/cm ²]	10 ¹⁹	2×10^{20}		
ξ	1.5	6.8		
χ	0.3	1.4		

Energy [J]	0.2	0.35	0.5	0.7	1.0
Intensity [10 ¹⁸ W/cm ²]	5.7	10	14	20	29
a0 or ξ	1.1	1.5	1.8	2.2	2.6
χ	0.24	0.32	0.38	0.45	0.54

MC simulated Interaction

Average of 1000 bunch crossings | 1.0J

×

E[GeV] DESY. | LUXE Experiment | Marius Hoffmann, FLC - Group Meeting - 06.05.2019

Input: Monte-Carlo generated laser-photon interactions

(A. Hartin)

MC simulated Interaction

Average of 1000 bunch crossings | 0.35J

Input: Monte-Carlo generated laser-photon interactions (A. Hartin)

LUXE: Setup

The pair detection system

Marius

Proposed Magnet

Taken from the DESY storage

suitable magnet from old DORIS accelerator

Doris Dipole	
Length	1.029m
Aperture horizontal	0.6m
Aperture vertical	0.1m
Max. Field strength	2.24T

Simulation of Magnetic Spectrometer

Modifying HERA spectrometer simulation code by Jenny

Mean or Peak ξ ?

Mean or Peak ξ ?

Occupancy vs. Detector Granularity

Occupancy vs. Detector Granularity

Pixel size / comparison with other experiments

Pixel Technology readily available

High occupancy in electronphoton interaction will probably force cherenkov counter for electrons

Experiment	Pitch
ATLAS IBL	50 μm × 250 μm
CMS Pixel Upgrade	25 µm × 100 µm
LHCb	55 μm × 55 μm
ALICE	25 µm × 25 µm
CMS HGCAL	0.5 cm ² hexagons

Next steps:

- **1.** Finalize design simulation studies
- Study Impact of Laser Pulse Shape
- Include track fitting
- Increase realism of detector with help of Jenny and Mikhael (multiple layers, scattering etc.)
- 2. Implement final design Full simulation in GEANT4
- 3. DESY test beam runs for validation of photon production models

LUXE: Setup

The Forward Photon Detector

Marina

- Detecting the Compton Edges in Electron-Photon Interaction
- Very high rates of photons
- Conversion to electron/positron pairs in foil/wire
- Challenging to any current detector technologies
- Searching for possibilities to decrease number of photons
- Reconstruct compton edges from electron/positron spectra

How LUXE is proposed to continue

Our Timetable

- August 2019: Publish letter of intent
- Winter 2020 and 2021: Installation of accelerator components
- 2022+2023: prototype experiment (stage-0)
 - Commissioning, data taking and publication of results
- 2024 upgrade to strong laser
- 2025-2027 Data Taking in the final experiment

Thank you for your Attention

Contact

DESY. Deutsches Elektronen-Synchrotron Hoffmann, Marius DESY FLC group marius.hoffmann@desy.de

www.desy.de

y angular distribution for different physics lists

- Angular distribution is the widest for option_4 physics list.
- The difference in angular distribution explains the observed difference in the number of photons at IP.
- Total number of photons in forward region is identical for all physics lists.

Number of photons inside |x|<1.5 m and |y|<1.5 m

Backup