Compton events in simulation

Number of events calculation

Luminosity calculation:

$$L = \frac{N_1 N_2}{2 \pi \sqrt{\sigma_{1x}^2 + \sigma_{2x}^2} \sqrt{(\sigma_{1y}^2 + \sigma_{2y}^2) + (\sigma_{1z}^2 + \sigma_{2z}^2) \tan(\frac{\phi}{2})}}$$

Angular distribution and rate estimation

Assuming it can be focused to $\sim 10 \ \mu m$ spot, the number of Compton events is ~ 10 .

Gamma spectra and polar angles

OPPP

Spectra of the photons (bremsstrahlung) that produced e-e+ pairs for 1.0J laser shot;

The same in linear scale

- Total number of pairs 24.5 per shot;
- Integral from 0 to 11 GeV: ~0.5 (2%);
- In the same time the population of low • energy photons in bremsstrahlung spectra is higher than high energy photons, but their contribution to OPPP is small ~2% below 11 GeV.
- It looks like it is important to have photons close to 17.5 GeV for OPPP study.

OPPP

Fraction of pairs produced by photons with energy below Ey in case of bremsstrahlung photons 1.0J laser shot;

