

LUXE experiment at the Eu-XFEL

general setup considerations

Gianluca Sarri

School of Mathematics and Physics, Queen's University Belfast, UK g.sarri@qub.ac.uk

Location

90 m tunnel right after the first electron switch

Building in Osdorfer Born available right above it, with openings for laser transport DESY. | LUXE beam line considerations | Florian Burkart

Accelerator Design

Start point of the second fan for XFEL

General setup

Electron beam:

- 14 or 17.5 GeV
- $\Delta E/E$: ~ 10⁻⁴
- Number of e^- : 6.2×10^9
- Beam size: 1 30 micron
- Duration: 1 80 fs (increases with charge)

Laser parameters:

	STAGE 0	STAGE 1
Energy [J]	0.35	7.0
Power [TW]	10	200
Intensity [W/cm^2]	10 ¹⁹	2x10 ²⁰
ξ Parameter	1.5	6.8
χ Parameter	0.3	1.4

Crossing angle:

17 degrees

- Energy:

General setup

General setup

Working with a focal spot with FWHM of 10 μ m will never allow $\chi > 1$ for a 200 TW system

- 2m away from the interaction point, the 10 GeV photons will have a diameter of ~ 100 μ m $d_0 \sim 5 mm$, $1/\gamma$ (@ 10 GeV) = 50 mrad => d_γ (@ 2m) = 100 mm
- 10 micron laser focal spot \rightarrow (10/100)² ~ 1% of the photons interacting with the laser
- 4 micron laser focal spot \rightarrow (4/100)² ~ 0.2% of the photons interacting with the laser

Phase 0: $P_L=10$ TW (2x10¹⁸ Wcm⁻², $a_0 \sim 0.7$, $\chi \sim 0.15) \rightarrow$ No pairs. However, good test-bed! **Phase 1:** $P_L=200$ TW (4x10¹⁹ Wcm⁻², $a_0 \sim 4$, $\chi \sim 0.7) \rightarrow \sim$ tens of pairs per shot **Phase 2:** $P_L=1$ PW (2x10²⁰ Wcm⁻², $a_0 \sim 7$, $\chi \sim 1.5) \rightarrow \sim$ hundred pairs per shot

- If we remove the collimator, dipole 1, and the tungsten foil, we can study electron-laser collisions
- In this case, we can assume the electron beam diameter to be 5 μ m, so we can focus more tightly and achieve an intensity > 10¹⁹ Wcm⁻² (a₀ ~ 1 2, χ ~ 0.2). Effectively, a re-make of the E144 experiment
- Still hard to detect pairs (~0.1 per shot). However, not impossible. In Gemini, we can detect ~ 5 pairs in 30 shots
- We can also do detailed studies of radiation reaction and stochastic photon emission.

Estimates

Assuming a 200 TW laser and 6x10⁹ primary electrons, we need a S/N better than 10⁸ at the detectors

OUEEN'S UNIVERSITY Noise estimates Gemini

TOP VIEW (in scale):

Noise estimates Gemini

TOP VIEW (in scale):

Noise estimates Gemini

TOP VIEW (in scale):

BELFAST Noise estimates Gemini

TOP VIEW (in scale):

Electron MAP (top view)

Positron MAP (top view)

Photon MAP (top view)

Conclusions

- Photon-laser interaction should be $\sim 2m$ downstream of the tungsten foil
- For that to work, we need a rather strong magnet (~1.5 Tm) and a collimator
- 2m downstream, the photon beam has a diameter of approximately 100 microns
- In tight focus (4 micron) only 0.2% of the photons interact with the laser
- In a looser focus (10 micron) only 1% of the photons interact with the laser
- In phase 0 (10 TW), negligible amount of pairs. They only become detectable at 200 TW (10s of pairs per shot) but it is at 500 TW or more than they become significant (100s to 10³ per shot)
- Assuming 600 pC electron beam, we need a S/N ratio better than 10⁸. This was achieved in the Gemini experiments (2GeV electrons)