

UHH Group meeting

15th May 2019

Underlying event tunes in CMS

Paolo Gunnellini

OUTLINE:

- What is the Underlying Event?
- Underlying Event tunes
- Tune choices in CMS

Introduction: the underlying event

<u>A hard pp-collision at the LHC</u> <u>can be interpreted as a hard</u> <u>scattering between partons,</u> <u>accompanied by the</u> <u>underlying event (UE)</u> <u>consisting of:</u> <u>Hadronisation</u> modelling

- Parton Shower
- Beam remnants
- Multiple Parton Interactions
- Hadronization

Current event generators use phenomenological models to simulate most of these components

Example of phenomenological model

Partonic cross section diverges as a function of the exchanged transverse momentum -> Regularization through a phenomenological energy-dependent parameter p_{T0}

Energy extrapolation is set according to a power-law function:

$$p_T^0 = p_T^{0,ref} \cdot \left(\frac{E}{E_0}\right)^\epsilon$$

E = energy E₀ = reference energy ε = energy exponent (free parameter) pT0ref = reference pT0 (free parameter)

Parameters are not theoretically defined

-> They can be constrained by the available data

-> <u>TUNE</u>: set of adjusted parameters whose predictions describe (some of) the available measurements

p_T^{0ref} values around 1.5-2.5 GeV at ref. energy of 7 TeV ε values around 0.2

What can we tune?

MPI

- Primordial k_T
- Parton shower
- Hadronization

e.g. $p_T^0 = p_T^{ref} \cdot (E/E_{ref})^{\epsilon}$ Proton matter distribution profile Colour reconnection

- e.g. Width of the gaussian used for modelling the parton primordial k_T inside the proton
- e.g. Strong coupling value Regularization cut-off Upper scale
- e.g. Length of fragmentation strings Strange baryon suppression

How does one tune all these?

- Choice of parameter ranges and sensitive observables
- Predictions for different parameter choices and interpolation of the MC response
- Data-MC difference and minimisation over parameter space

How can we study the UE activity?

How to measure the Underlying event contribution?

Definition of a leading object and of its direction (ϕ^{max})

Identification of four regions:

- TOWARD: $|\Delta \phi| < 60$
- TRANSVERSE: $60 < |\Delta \phi| < 120$
- AWAY: $|\Delta \phi| > 120$

Observables:

- Charged particle multiplicities
- Average transverse momentum sum (of charged particles)

<u>TransMAX and TransMIN denote the transverse regions with</u> the largest and the smallest activity, defined event-by-event

How well do we understand the UE?

CMS pre-13 TeV tuning effort: fitting UE observables at different energies for trying to predict UE activity at 13 TeV

- CUETP8M1: based on Monash tune but focusing on energy dependence of transMIN and MAX observables

Tune 4C: old tune from Pythia8 authors

CUETP8M1: new CMS tune which was used in production at the beginning of RunII

How well do we understand the UE?

CMS pre-13 TeV tunes do not optimally describe the 13 TeV data:

- Monash tune from Pythia8 authors
- CUETP8M1 (CMS Pythia8 tune)
- Herwig7 tune (UE-MMHT)
- CUETP8S1 (CMS Pythia8 tune based on CTEQ6L1)

None of the tunes (especially the previous CMS tune) is able to give a good description of the UE data.

<u>CMS decided to perform a re-tune of the UE parameters to</u> <u>improve the description of the plateau region of the UE data</u>

Tuning strategy

Particular attention is given to improve the performance of "matched configurations":

- Higher-order matrix element (POWHEG, MADGRAPH) + UE simulation from P8

Leading order: tree-level (the most simple diagram):

- 2 initial partons, 2 leptons in the final state

Example: Z boson production decaying into two leptons

Multileg diagrams: additional real emissions are produced in the calculation

- 2 initial partons, 2 leptons in the final state $+ \ge 1$ final partons

Next-to-leading order (NLO): virtual corrections (loops) calculated in the matrix element

- 2 initial partons, 2 leptons in the final state (+ virtual corr. in init. and fin. state)

PYTHIA: Generation of leading order diagrams + parton shower + underlying event

Madgraph/aMC@NLO: Generation of multileg and/or NLO diagrams (PS+UE from PY.)

POWHEG: Generation of NLO diagrams (PS and UE from PYTHIA)

Tuning strategy

Particular attention is given to improve the performance of "matched configurations":

- Higher-order matrix element (POWHEG, MADGRAPH) + UE simulation from P8

Phenomenological studies show that:

- Higher-order matrix element simulation works best when using a PDF of the same order
- Higher-order matrix element simulation works best when the parton shower attached to it uses the same PDF order and same value of the strong coupling

TUNES USING DIFFERENT ORDERS OF NNPDF3.1 PDFs:

- CP1-2 (LO PDF, strong coupling = 0.13)
- CP3 (NLO PDF, strong coupling = 0.118)
- CP4-CP5 (NNLO PDF, strong coupling = 0.118)

Different tunes for different PDF orders

Differences in the gluon distribution for the different PDF sets need to be compensated by a larger amount of multiple parton interactions (MPI)

$$\frac{\mathrm{d}\hat{\sigma}}{\mathrm{d}p_{\mathrm{T}}^2} \propto \frac{\alpha_{\mathrm{s}}^2 \left(p_{\mathrm{T}}^2 + p_{\mathrm{T0}}^2\right)}{\left(p_{\mathrm{T}}^2 + p_{\mathrm{T0}}^2\right)^2}$$

<u>NNLO PDF -> lower gluon PDF -> More MPI -> Lower pT0Ref</u> <u>LO PDF -> lower gluon PDF -> Less MPI -> Higher pT0Ref</u>

Tune	pT0Ref paramater
CP2 (LO)	2.3 (GeV)
CP3 (NLO)	1.5 (GeV)
CP5 (NNLO)	1.4 (GeV)

How well do we understand the UE?

Tunes based on UE data at 1.96, 7 and 13 TeV -> description of UE data improves (especially at 13 TeV) -> Tunes using higher-order PDF sets (NLO, NNLO) have the same performance as LO PDF sets

UHI #

Weekly UHH group meeting

How well do we understand other observ.?

Summary

- Tuning Monte Carlo event generators is important to constrain the free parameters of the implemented phenomenological models
- We have a lot of UE data measured at different energies available for tuning
 - They are measured with high precision
 - Current simulation is challenged to describe all of them
- Many attempts to describe them with different generators, PDF sets, settings
- CMS uses a tune [CP5] based on NNLO PDF set:
 - It describes UE observables as well as tunes using LO PDF sets
 - It improves the description of data when UE simulation is matched to higher-order matrix elements

Why do we actually tune the parameters?

Not only for fun!

Correct description of the data

- Pile-up simulation
- Evaluation of detector effects and unfolding
- Estimation of background (in MC-driven approach)
- Models are not "allowed" to fail
- Good physics predictions
 - Correct evaluation of physics effects
 - Models are "allowed" to fail

