

Measurement of top tagging efficiencies

Dennis Schwarz

February 19, 2020

Group meeting

- Abundant production of high- p_T top quarks at LHC
- High-*p*_T tops are often part of searches or measurements
- Hadronic top decays are highly collimated
- $\rightarrow\,$ reconstruction with one jet
- $\rightarrow\,$ Important to identify those jets

Large radius jets to include full top decay

AK8

- Constant radius of R = 0.8
- Standard in CMS

HOTVR

- Adapt radius with $R = \frac{\rho}{\rho_{\rm T}}$
- Mass jump criterion
 - $\rightarrow\,$ suppressing soft radiation
 - $\rightarrow\,$ defining subjets

Identification of top jets with substructure

- Jet mass (soft drop grooming)
- N-subjettiness ratio $\tau_{32} = \tau_3/\tau_2$

Additional requirements for HOTVR

- Number of subjets
- p_{T} fraction of leading subjet
- Minimal pairwise mass of two subjets

Measurement strategy

- tag and probe method
- μ +jets $t\bar{t}$ events
- leptonic decay leg as tag

- high p_T muon
- b-tag in leptonic hemisphere

top iet

 probe jet: AK8/HOTVR jet in hadronic hemisphere

Goal: Provide p_T dependent data-to-simulation scale factors

lepton b-iet

Jet collection	Working points
AK8 PUPPI	10 (5 with $+$ 5 without subjet b tagging)
AK8 CHS	8 (4 with $+$ 4 without subjet b tagging)
HOTVR	1

- \rightarrow 19 working points per year
- \rightarrow Provide scale factors for 57 working points in total!

Disclaimer: In this talk I will focus on AK8 PUPPI in 2018

- Split tt in merged, semimerged, not merged
- 2. Define pass and fail regions (per WP)
 - AK8: *τ*₃₂ cut
 - HOTVR: $N_{\text{subjets}} \ge 3$, f < 0.8, $m_{ij} > 50$ GeV, τ_{32} cut

- Split tt in merged, semimerged, not merged
- 2. Define pass and fail regions (per WP)
 - AK8: *τ*₃₂ cut
 - HOTVR: $N_{\text{subjets}} \ge 3$, f < 0.8, $m_{ij} > 50 \text{ GeV}$, τ_{32} cut
- 3. Fit jet mass in pass and fail

- Split tt in merged, semimerged, not merged
- 2. Define pass and fail regions (per WP)
 - AK8: τ_{32} cut HOTVR: $N_{\text{subjets}} \geq 3$, f < 0.8,

 $m_{ij} > 50$ GeV, au_{32} cut

- 3. Fit jet mass in pass and fail 4. Get efficiencies $\epsilon_{tag} = \frac{N_{pass}}{N_{pass}+N_{fail}}$ • ϵ_{tag}^{MC} from MC **pre** fit
 - ϵ_{tag}^{data} from MC **post** fit

- Split tt in merged, semimerged, not merged
- 2. Define pass and fail regions (per WP)
 - AK8: τ_{32} cut ■ HOTVR: $N_{\text{subjets}} \ge 3$, f < 0.8,

 $m_{ij} >$ 50 GeV, $au_{
m 32}$ cut

- 3. Fit jet mass in pass and fail
- 4. Get efficiencies $\epsilon_{tag} = \frac{N_{pass}}{N_{pass} + N_{fail}}$
 - $\epsilon_{\text{tag}}^{\text{MC}}$ from MC **pre** fit
 - ϵ_{tag}^{data} from MC **post** fit
- 5. Get efficiency of mass window from cut and count $\epsilon_{\rm mass} = \frac{N_{\rm 140} < m_{\rm jet} < 220}{N_{\rm all}}$

- 6. Extract $\epsilon_{tot} = \epsilon_{tag} \cdot \epsilon_{mass}$
- 7. Calculate data-to-simulation scale factor:

$$\mathsf{SF} = rac{\epsilon_{\mathsf{tot}}^{\mathsf{postfit}}}{\epsilon_{\mathsf{tot}}^{\mathsf{prefit}}}$$

AK8 scale factors

- Scale factors measured for full Run 2
- Split into merged, semimerged, not merged
- Working points defined by τ_{32} cut
- We also provide a set of scale factors with additional subjet b tagging applied (not shown here)
- Differences between the years can further be investigated

Differences between the years

- Data/MC mostly flat against p_T
- Normalization off in 2016

(changed with new tune in 2017 and 2018)

Very good prediction in 2018

Differences between the years

- Worse τ_{32} description in 2017 and 2018
- New tt tune responsible
- Leading to smaller SF in 2017 and 2018 (2016 close to 1)

- Only one working point for HOTVR (here: all 3 years)
- HOTVR possible for smaller p_T
- \blacksquare SF very close to 1 and flat

Dennis Schwarz

- Top tagging is an important tool for a variety of searches and measurements
- Measurement of p_T dependent top tagging scale factors
- Wide range of working points covered
- Targeting publication of plots in a DP note (in progress)

