Coupling control at E.S.R.F.

L. Farvacque

A. Franchi

J. Chavanne

E.S.R.F.

ESLS XVII Desy, Hamburg 26-27 November 2009

Introduction

- Correction strategy
- Analysis of results
- Effect of Insertion Devices
- Future plans

Correction strategy

- Old method
 - Empirical correction of the two nearest coupling resonances
- New method
 - Coupled response matrix fit by introducing tilt errors on the 256 quadrupole magnets (SVD)
 - Vertical dispersion fit by introducing tilt errors on the 64 dipoles
 - Fit of the 32 skew correctors to minimize either:
 - Eigen emittances,
 - Vertical beam sizes,
 - Betatron coupling coefficient γ
 - Resonance driving terms,

• ...

Response matrix (example)

Rms orbits: x: 261 μm z: 6 μm

Example error model

- Focusing errors + corrections
 - rms quad. strength error of 1.2x10⁻³
 - β-beat of 2.5%
- Coupling errors + corrections
 - rms quad. tilt error of 2.5x10⁻⁴
- The smallest Eigen mode is almost vertical but its orientation varies along the circumference

Example error model

- The vertical emittance is the projection of the two Eigen modes in the vertical plane
- It varies along the circumference but is constant in-between two skew errors
- It may be significantly higher than the Eigen emittance

Example error model

- We only measure beam sizes:
 - 2 pinhole cameras
 - 11 In-air X-ray detectors (vertical beam size only)
- The vertical emittance is computed using the vertical β-function. For a coupled lattice, this is simplistic.
- Fluctuations are expected but are surprisingly high. They explain the large deviations between monitors

The simplest model

- No focusing errors (no β-modulation)
- A single skew error
- The beam size modulation is still large

Experimental results

Start-up of beam delivery:

Experimental results

Some time later:

Calibration of ID effect

- The coupled orbit scales linearly with a single skew focusing error,
- So we can make the difference of 2 response matrices measured with a gap open and then closed,
- The resulting difference matrix is fitted with a single skew error located at the ID centre,
- In this analysis we ignore the residual coupling. However for better results, this is done with a well corrected machine.

Check of the method

• The method is checked by modifying a single skew quad corrector

Check of the method

- The method is checked by modifying a single skew quad corrector
- The calibration agrees with the theoretical value
- The resolution is estimated at 1.10^{-4} m⁻¹, or 20.10^{-4} T

ID13 calibration

- One of the most critical IDs (in-vacuum)
 - The measured emittance vary when closing the gap

ID13 calibration

- One of the most critical IDs (in-vacuum)
 - The measured emittance vary when closing the gap
 - The corresponding skew quad strength is accurately measured

Other IDs

ID		Gap [mm]	Skew quad [m ⁻¹]	_	Worst case (never
ID13	IVU18d	6	3 10 ⁻³		conceledy
ID6	CPMU18u	6	0.9 10 ⁻³	_	In air perfect
ID11	IVU23d	6	3.6 10-3 🔺		in all, ponoot
ID2	U21.4m	11.5	-4 10 ⁻⁵		
ID14	U35u	11.8	-3.5 10-4		In air

- Pending problems
 - The resulting strength is much higher than the result of magnetic measurements
 - It's already at the limit of what can be achieved at construction
 - \Rightarrow We need to correct dynamically

Future plans: full correction

- Long procedure (20 minutes), cannot be used during beam delivery,
- Can be accelerated by using turn-by-turn data instead of response matrix,
- Can be improved with a better skew quad scheme (more correctors, better spacing),
- Can be accelerated with better fit criteria.

Future plans: ID correction

- For the worst IDs
 - Calibration
 - Feed-forward correction
 - Either with local correctors
 - Or using the global scheme
- For all
 - Feedback on the nearest resonance
 - 2 knobs (amplitude and phase), using the IAX beam size measurements