

Update of the FERMI@Elettra Project

S. Milton for the FERMI Team

ESLS 2008 27 November 2009 DESY

The FERMI@Elettra Project

FERMI@Elettra is a single-pass FEL user-facility covering the wavelength range from 100 nm (12 eV) to 4 nm (310 eV).

The main machine characteristics are:

- High peak power (~GW) optical pulses with synchronization to external laser sources.
- Ultrashort pulses (100 fs to 10 fs).
- APPLE II-type undulators to enable flexible tuning of both photon wavelength and polarization.
- Implementation of seeded harmonic cascade FEL schemes for tunable and controlled short-wavelength photon pulse production.
- Advanced feedback and feed-forward systems to improve output stability.

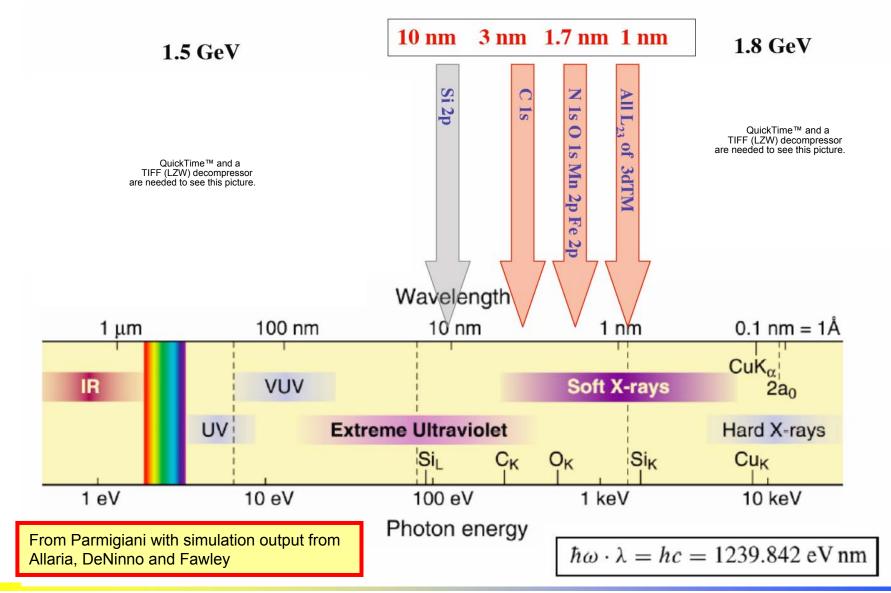
FERMI@Elettra Core Experimental Programs

Low Density Matter (Coordinator: C. Callegari)

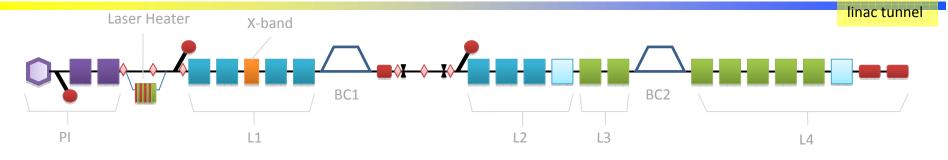
- Cluster and Nanoparticle Spectroscopy
 - Spokespersons: F. Stienkemeier, B. von Issendorff (Univ. of Freiburg)
- Ultrafast Processes and Imaging of Gas Clusters and Nanoparticles
 - Spokespersons: T. Möller, C. Bostedt (TU-Berlin)
- Atomic, Molecular and Optical Science Beamline
 - Spokesperson: K. Prince (Sincrotrone Trieste)
- Spectroscopic Studies of Reaction Intermediates
 - Spokesperson: S. Stranges (University of Rome La Sapienza)

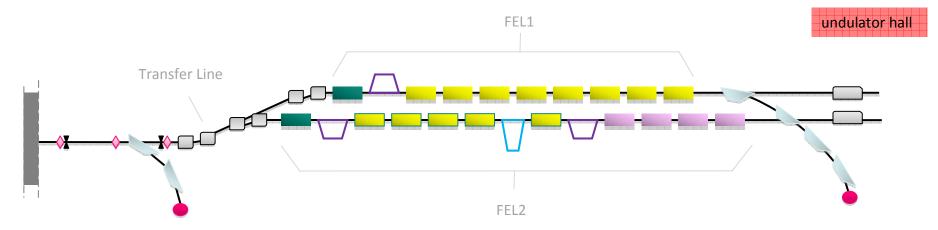
Diffraction and Projection Imaging (Coordinator: M. Kiskinova)

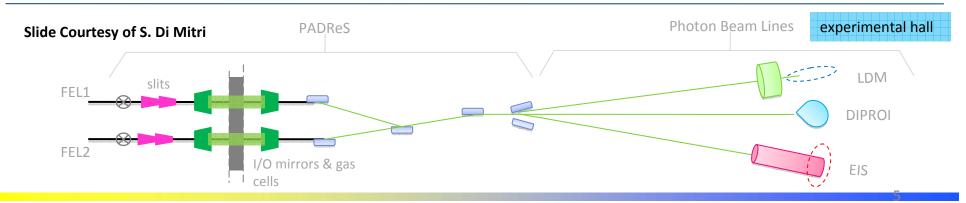
- Ultrafast Coherent Imaging at FERMI
 - Spokesperson: H. Chapman (CFEL-DESY), J. Haidu (Stanford Univ. and Uppsala Univ.)
- Full Field X-ray Microscopy and Lensless Imaging
 - Spokespersons: M. Kiskinova, B. Kaulich (Sincrotrone Trieste), T. Wilhein, IXO, Rhein Ahr Campus Remagen, Germany

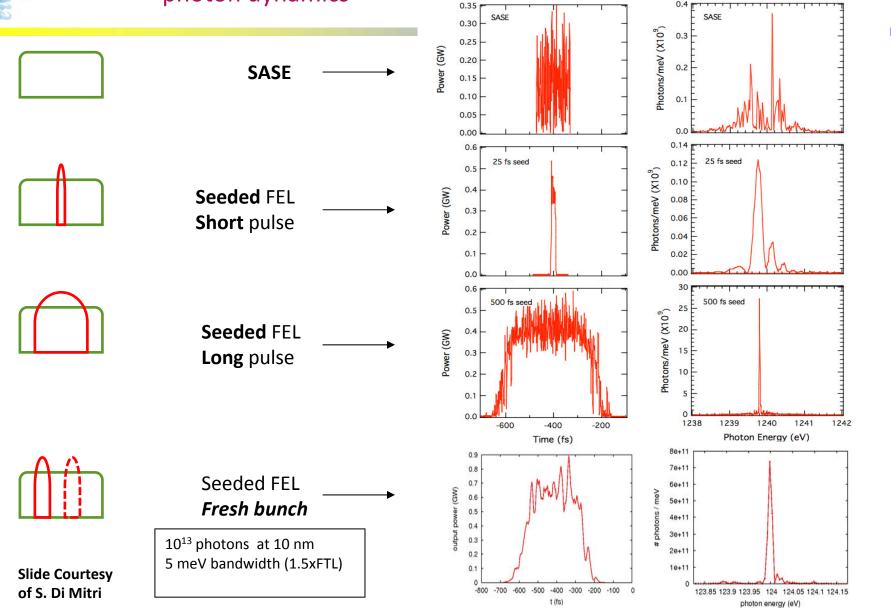

Elastic and Inelastic Scattering (Coordinator: C. Masciovecchio)

- TIMER and TIMEX
 - Spokespersons: C. Masciovecchio (Sincrotrone Trieste), A. Di Cicco (UNICAM and Univ. Paris IV), G. Ghiringhelli (POLIMI)


Critical Absorption Edges







photon dynamics

4. design study

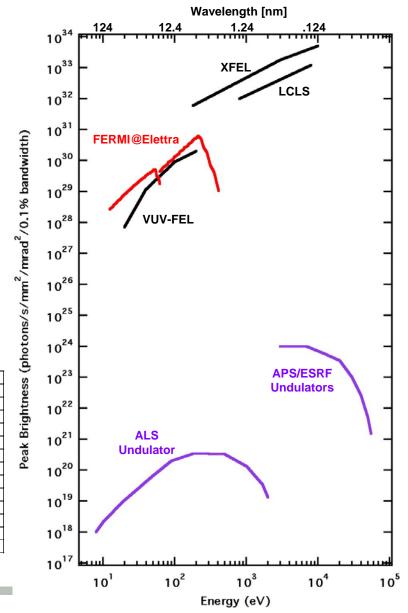
FERMI@Elettra Performance

Wavelength Range

 100 nm to 4 nm (Fundamental)

Pulse Duration

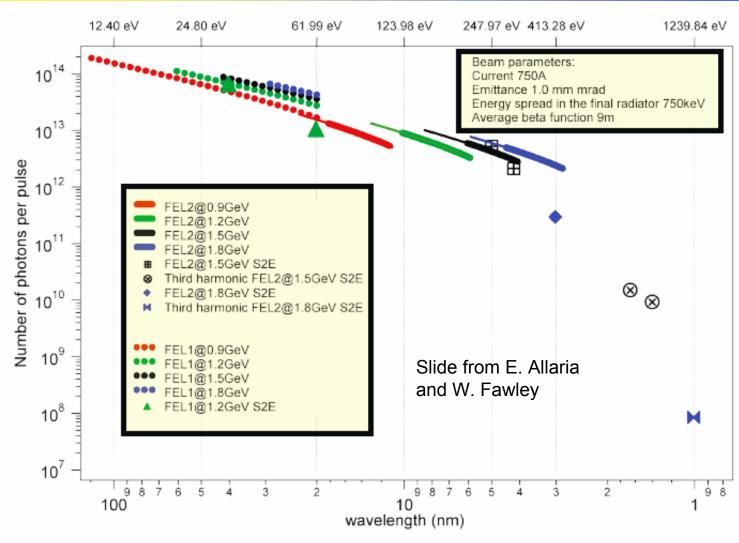
• 100 fs to 20 fs


Polarization

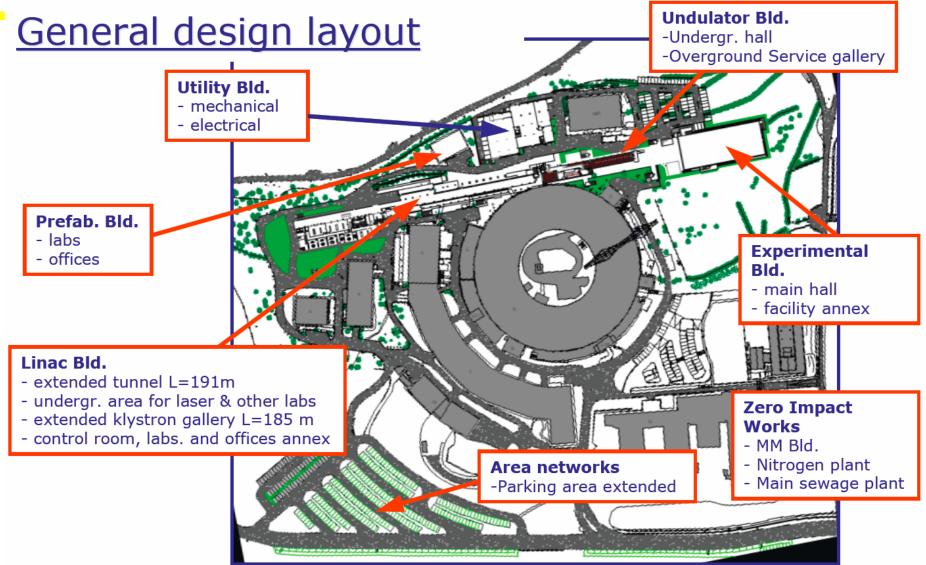
Fully Variable

Seeded Operation

 Strong longitudinal and full transverse coherence


Parameter	FEL-1	FEL-2
HGHG Stages	1	2 (Niresh bunchÓin 2nd stage)
Fundamental Wavelength range [nm]	100 to 20	20 to 4 (1.3 at 3rd harm.)
Output pulse length (rms) [fs]	< 100	20 Š 100 (< 10 future goal)
Bandwidth (rms) [meV]	17 (at 40 nm)	100 (at 4.2 nm)
Polarization	Fully Variable	Fully Variable
Repetition rate [Hz]	50	50
Peak power [GW]	1 to >5	0.5 to 2
Harmonic peak power (% of fundamental)	~2	~0.2 (at 4.2 nm)
Photons per pulse	10 ¹⁴ (at 40 nm)	2x10 ¹² (at 4.2 nm)
Pulse-to-pulse stability	² 30 %	~40 %
Pointing stability [µrad]	< 20	< 20
Virtual waist size [µm]	250 (at 40 nm)	120
Divergence (rms, intensity) [µrad]	50 (at 40 nm)	10 (at 4.2 nm)

FEL Operational Range



Lines predicted using M.Xie formulae for expected FERMI parameters assuming 40fs pulse length Points Ginger and Genesis simulations for S2E files

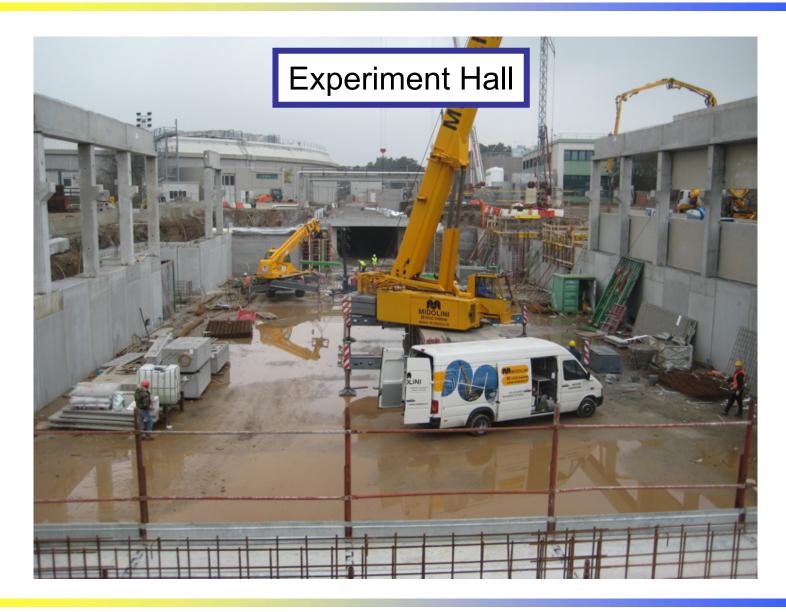
Civil Engineering Scope

elettra FERMI@Elettra Civil Construction

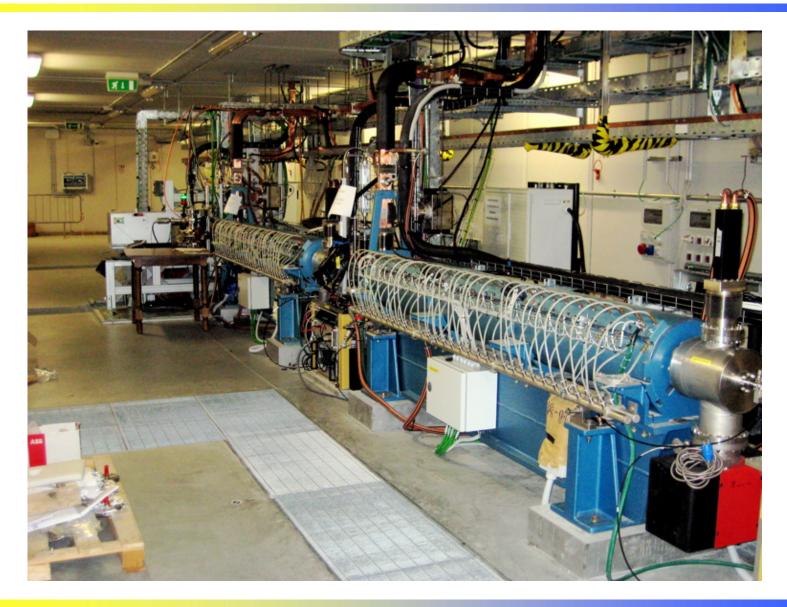
Construction as Last ESLS 2008

New Lab/Office/Control Room Building

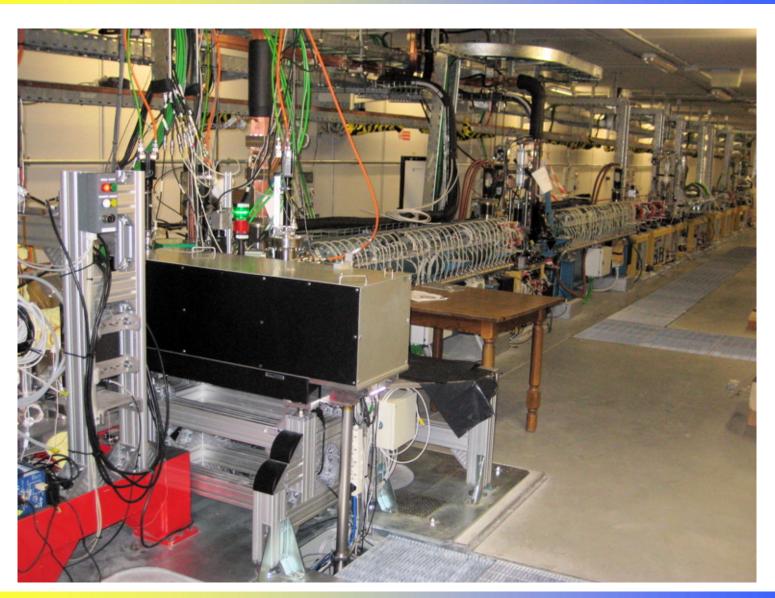




Construction Completion Dates Gelettra



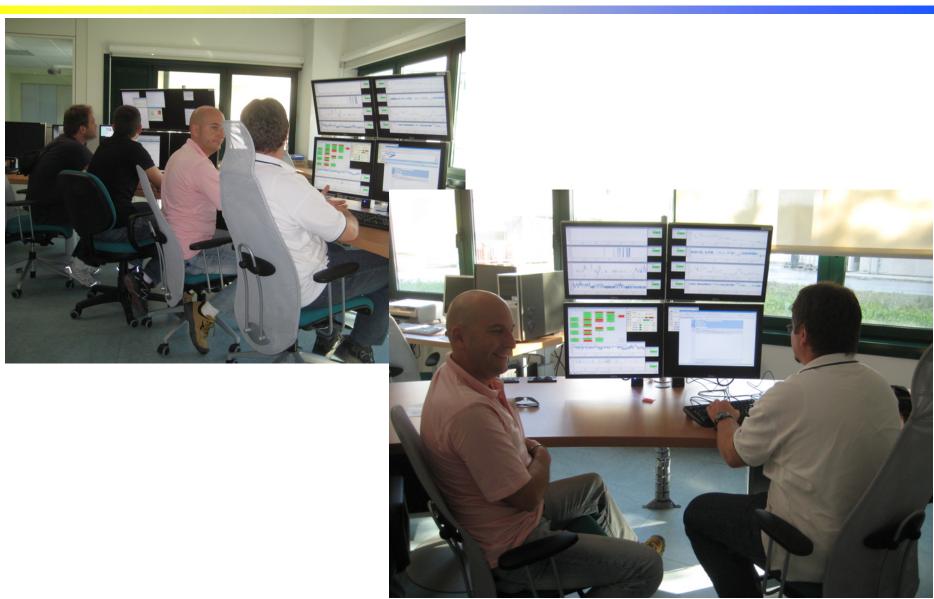
- Undulator and Experiment Hall Roofs
 - 30 December 2009
- Co-Occupancy Undulator Hall
 - 3 February 2010
- Co-Occupancy Service Gallery
 - 13 March 2010
- Co-Occupancy Experimental Hall
 - 18 April 2010
- Electrical/Mechanical Plants Fully Commissioned
 - 30 May 2010
- Beneficial Occupancy All Buildings and Services
 - 30 June 2010


Injector (Looking upstream)

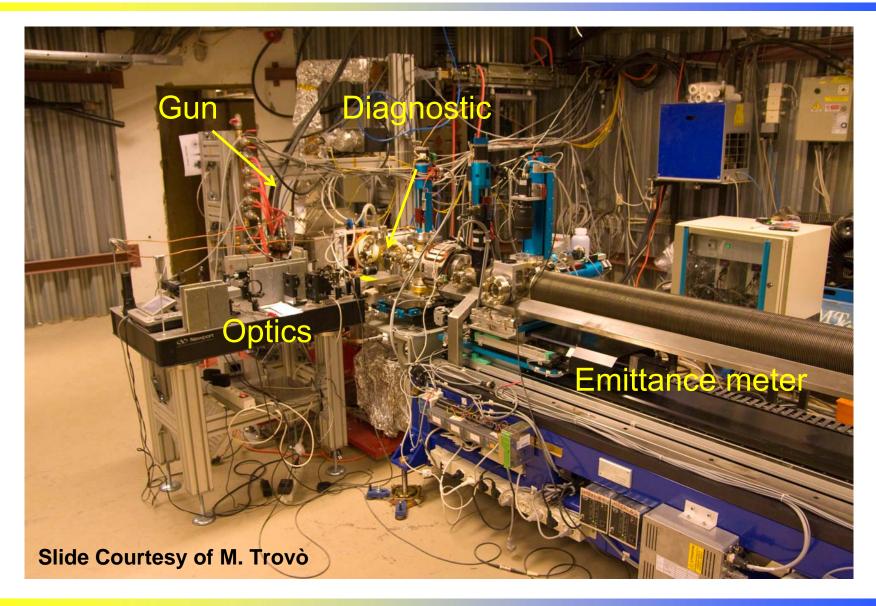
Injector (Looking downstream through laser FERM) heater region)

CERN Structures in Place

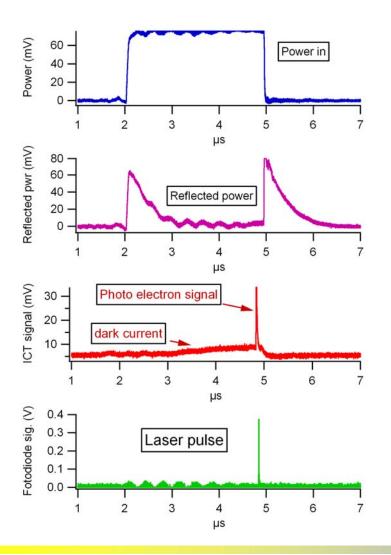
BTW and SLED Structures in Place Gelettra



Control Room During Commissioning



MAX-lab cave 2008/2009



PC Gun beam

Photo electron extraction:

Slide Courtesy of M. Trovò

28 May 08:

First photoelectron beam extraction!

180 pC by 50 μJ

Electron beam on the YAG screen with 80 MV/m RF gradient and $I_{solenoid} = 110$ A (the horizontal and vertical scales represent the number of the CCD pixel).

Experience at MAX-lab

	ST	INFN (*)
Number of work trips	10	4
Presence at MAX-lab	76 dd	17 dd
Personnel at MAX-lab	20 p.	10 p.
number of man days	297 dd	77 dd
Number of Gun runs - shifts	5 -36	2 - 10

(*) figures estimated from the logbook.

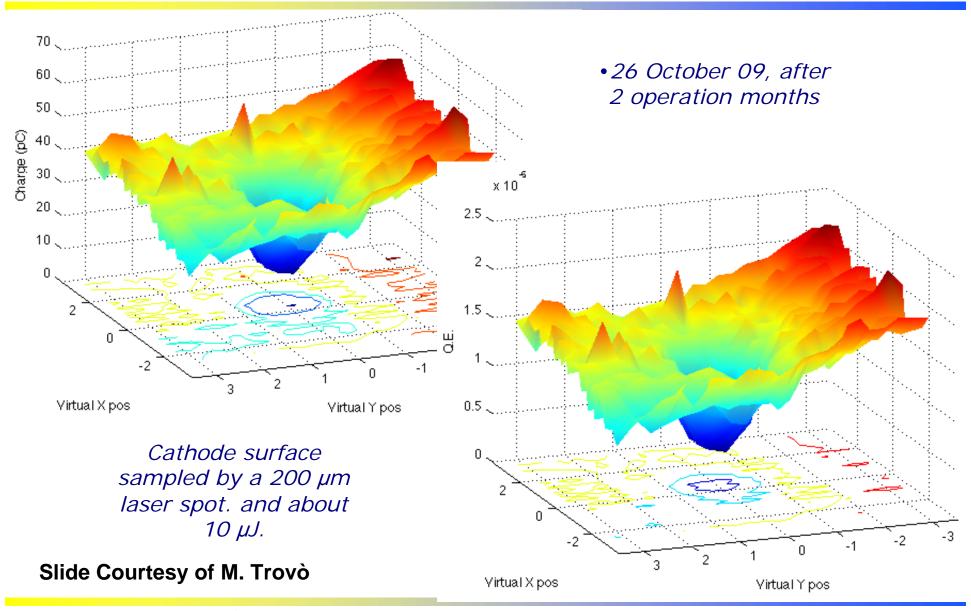
Slide Courtesy of M. Trovò

Trip date	વાદાપ્રદ	Activity
12 Oct. '07	2	Collaboration agreement definition
24 Nov. '07	2	Technical meeting and tunnel inspection
14 March '08	9	Supports placement and control station installation
27 March '08	7	Gun system installation
21 May '08	12	Cavity conditioning and first beam
30 June '08	15	Beam measurements and E-meter installation
26 Sept. '08	10	E-meter measurements
15 Dec. '08	5	Beam characterization and test of new Toroid acq. system
11 Feb. '09	8	Cerenkov radiator installation and test
5 Apr. '09	6	Disassembling and packaging.

Early Performance of Drive Laser and PC Gun Beam

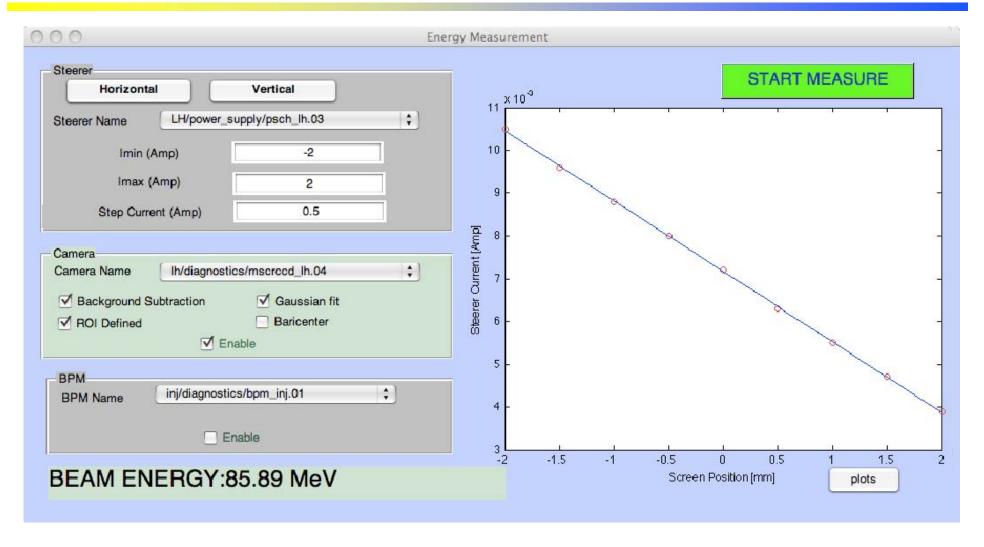
QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Early Laser Virtual Cathode Measurement

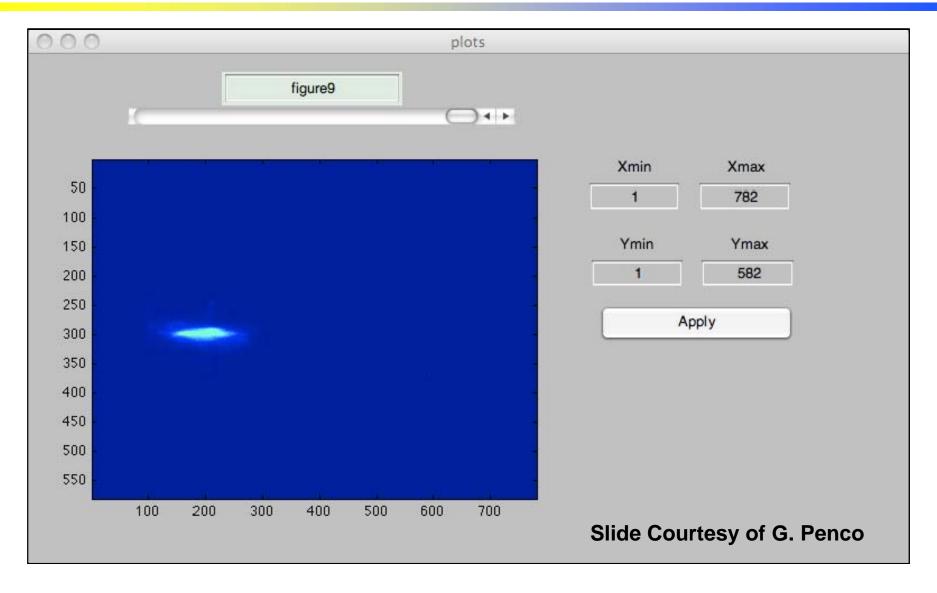

Associated Electron beam Spot on Screen

QuickTime™ and a TIFF (LZW) decompressor are needed to see this picture.

Cathode QE map

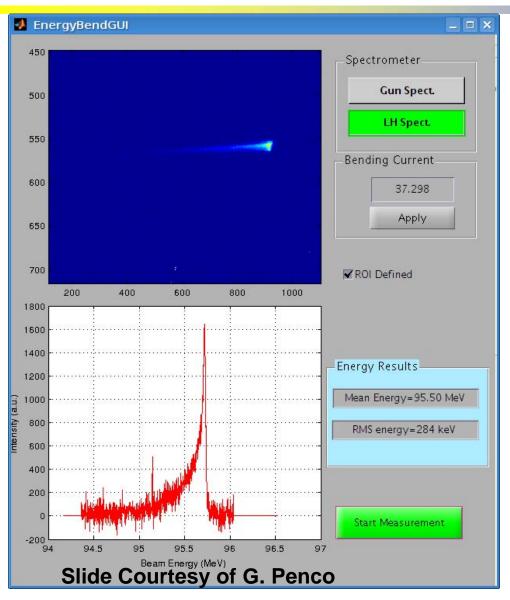


Energy measurement steerer method



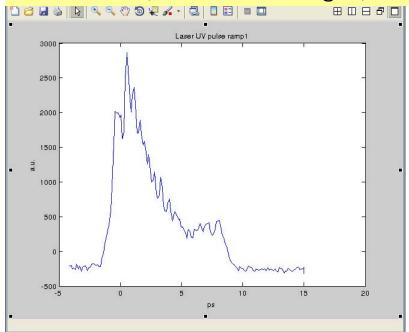
Slide Courtesy of G. Penco

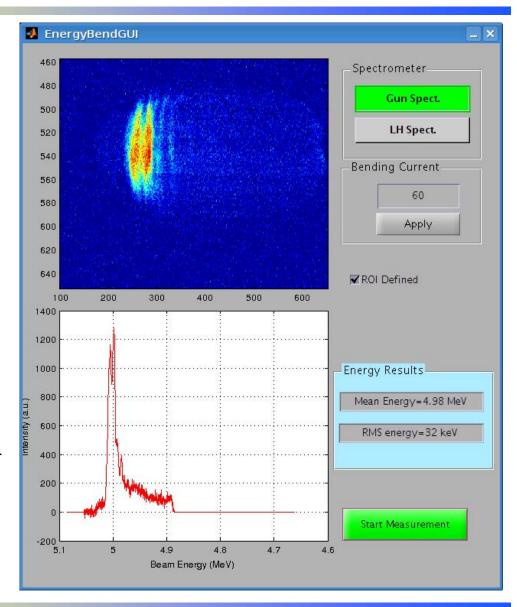
Energy measurement steerer method



Energy measurement Bending magnet

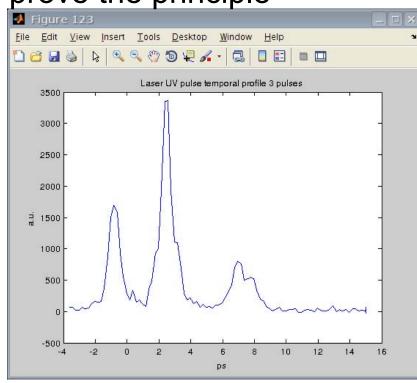
QuickTime™ and a decompressor are needed to see this picture.

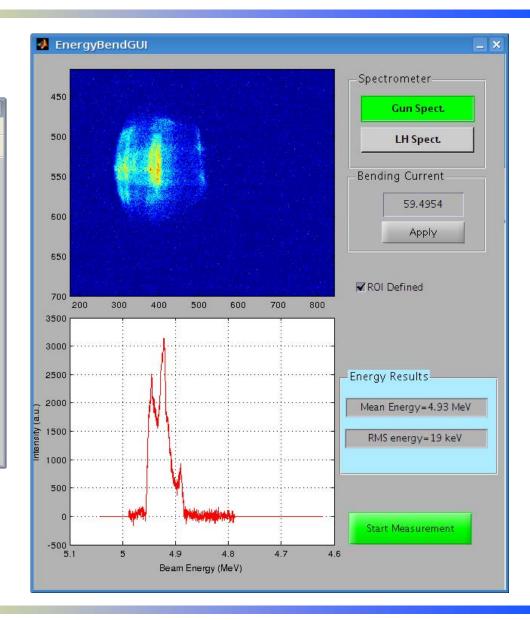

Energy jitter (short term) about 3keV (rms)
@5MeV QuickTime M and a decompressor are needed to see this picture.


Longitudinal profile investigation (1/2)

First laser longitudinal ramp profile as measured with cross-correlator (head on the right):

Setting the RF phase of the gun in order to have a linear correlation between time and energy, it is possible to investigate the longitudinal structures with the gun spectrometer

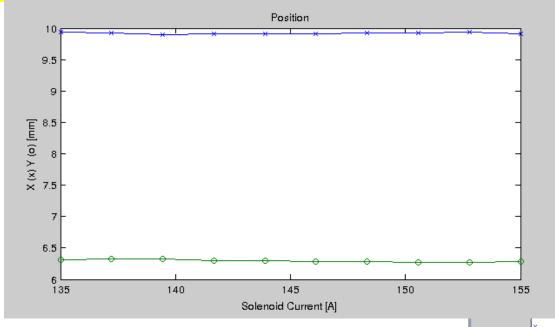



Longitudinal profile investigation (2/2)

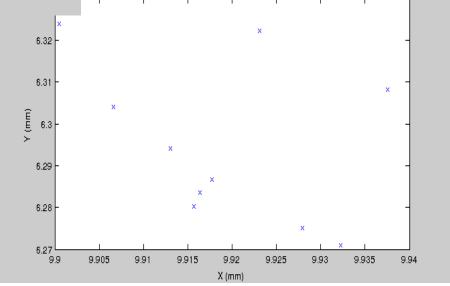
Exotic pulse shaping to prove the principle

Slide Courtesy of G. Penco

Phase Scan



QuickTime™ and a decompressor are needed to see this picture.

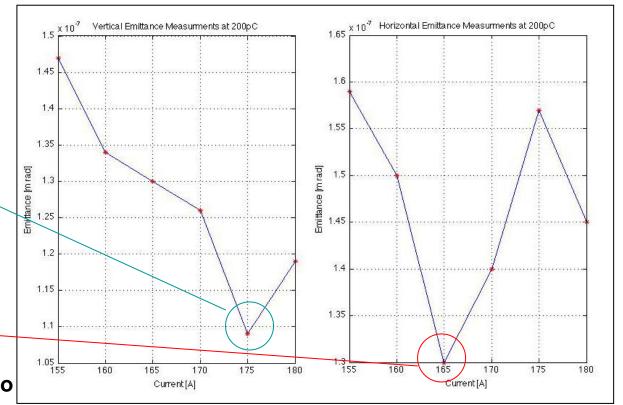

Gun solenoid allignment

Optimizing the laser pointing (monitoring on the virtual cathode) to minimize the bunch transversal drift when scanning the gun solenoid.

Less than 50µm drift in both planes

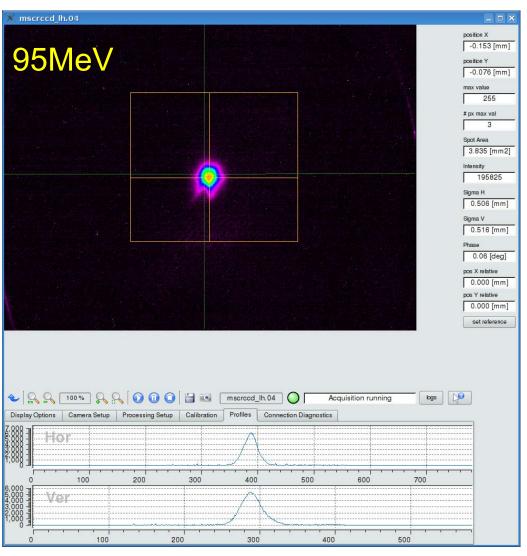
e-meas. by slit method @ 5MeV

QuickTime™ and a decompressor are needed to see this picture.

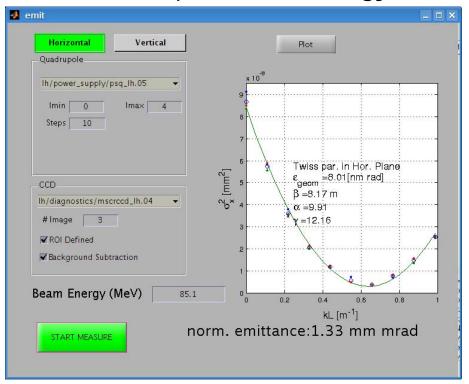

Measurements of the emittance in X and Y varying the gun solenoid strength

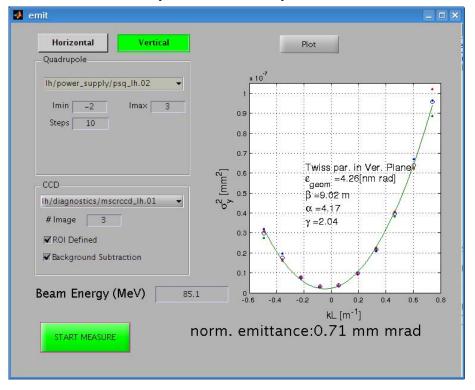
Min. value of 1.08μrad for 175Amps

X-plane:


Min. value of 1.3μrad for 165Amps

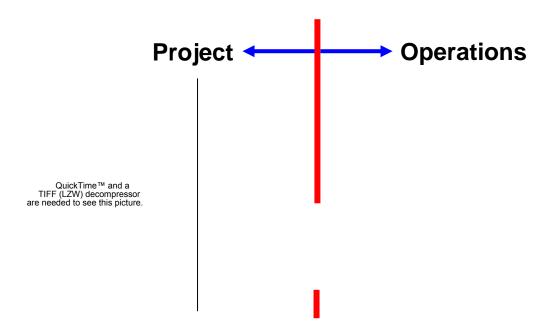
Beam transported up to the injector end


Slide Courtesy of G. Penco



Preliminary emit meas.

In this example: beam energy = 85 MeV, Q=100 pC. (not optimized)


The goal is to match the optics to the nominal one:

- measured optics parameters,
- backtrack up to the LO exit,
- readjust the 4 quads
- re-measure

FERMI Global Schedule

"Shaded" areas merely underline the fact that there are many areas involved, some of which are phased to start earlier or later than other areas

F	ERMI INTEGRATED INSTALLATION					200)9								2	01	0				Ī				20	011			
	AND COMMISSIONING PLAN	1	2	3 4	5	6	7 8	9	10	11	12 1	1 2	3	4	5	6 7	7 8	9	10	1 12	2 1	2	3	4 5	6	7	8 9	10	11 12
Civil	Linac tunnel works, Niche for BC1 spectrometer																												
Civil	Linac above ground works																												
Engineering	Main FERMI construction: 25/03/09 - 30/06/2010											UH	SG	EH	ЕМ В	o				İ					İ				
	1 st Installation Phase 2009																					İ							
	1 st Commissioning Phase 2009																												
	L2 (C6-C7), L3-L4 (S1-S7) ACC sections install.																												
To a table at a s	10 Hz RF plants: KG03, KG05, KG06 and KG07																												
Installation	Waveguides: KG03,05 (new); KG01,02 (upgrade)																												
2 nd phase,	Tertiary Water System for L1 Acc Sec and WGs																												
Linac Tunnel																													
and Klystron	Support tables from L1 through BC1																												
Gallery SEP 2009	L1 intrasections: magnets, diagnostics, vacuum																												
3EP 2009	BC1 (no chicane): magnets,diagnostics,vacuum														İ							1 1							
JAN 2010	Cabling from L1 through BC1																												
JAN 2010	Timing optical cabling through BC1				İ		i	İ							İ				Ĺ			İİ		Ĺ					
	Power supplies, controls, interlock, T&S L1-BC1																												
Com 2 nd phase	Commissioning: LH, L1, BC1 diagnostic																												
	50 Hz RF Plants from KG08 through KG14																												
	Waveguides: KG06 to KG14																												
Installation	Tertiary Water System for L2, L3, L4																												
3 rd phase,	L2-L4 intrasections, TLS, DBD: support tables																												
Linac Tunnel	L2-L4 intrasections, TLS, DBD: magnets																												
and Klystron	L2-L4 intrasections, TLS, DBD: diagnostic, vac.				İ			İ						j	İ				j										
Gallery	L2-L4 intrasections, TLS, DBD: cabling																					İİ		Ĺ					
JAN 2010	L2-DBD:power supplies, controls, interlock, T&S																												
-	Timing optical cabling through L4																												
JUN 2010	Remove temporary wall and reinstall plants																												
	Acc section C5 and intrasection, waveguides																												
	BC1 chicane: tables, magnets, diagnostics, vac.																												
	Undulator Hall: Network and Layout											8																	
Installation	SCL, SFEL1e2, FEL-1 (up to MBD) support tables																												
	UH, SSA, USA, ESA: cabling																												
3 rd phase,	SCL, SFEL1e2, FEL-1: magnets																					1 1							
Undulator	SCL, SFEL1e2: vacuum and diagnostics (partial)																												
Hall, Service	FEL-1: vacuum, diagnostics (partial in IUFEL-1)																					İ							
Gallery	PADReS Front - End																												
JAN 2010	SCL, SFEL1, FEL-1, MBD: power supplies																												
AUG 2010	SCL, SFEL1, FEL-1, MBD: controls and interlock																												
A00 2010	UH and SG Timing&Synchronization system																												
	Seed Laser System																												
Com. 3 rd phase	BC1 chicane, L2, L3 and L4, TLS and DBD																												

FERMI @ Elettra MASTER PLAN

F	ERMI INTEGRATED INSTALLATION					20	009)								20	10									20	11				
	AND COMMISSIONING PLAN	1	2	3	4 !	5 6	7	8	9	10 1	1 12	1	2	3 4	5			8	9 1	0 11	12	1	2	3 4	5			8 9	10	11	12
T	RF Plant KG15 and waveguides to HE RF deflec.																														
Installation	High Energy RF deflectors in linac tunnel		Ţ										Ţ								Ţ										
4 th phase	FEL-1 intraundulator diagnostics and vacuum		Ţ		Ţ	Ţ						Ţ	Ţ		Ţ					\top	Ţ		\neg		\uparrow	İ		丁	\top		\neg
JUL 2010-	Main Beam Dump (tabl., mag., vac., diag., PS)		T								Т		T							T	T		\neg		T		op	\neg	\top	П	\neg
AUG 2010	Continue PADReS Front - End		T								Т												\neg	\top			T	\lnot	\top	П	٦
Com. 4 th phase	SCL, SFEL1, beam transport in FEL-1 and MBD		i																												╕
Installation	FEL-1 undulators	i	i		i	İ						İ	i		İ		i				İ									Ιİ	\exists
5 th phase	FEL-1 phase shifters		Ī								Т										Ī										\neg
OCT 2010	Collimators linac and spreader (FEL-1)										Т								- 8	8											7
Com. 5 th phase	FEL-1 and PADReS commissioning										Т																		\top		=
	PADReS optical transport system										Т												\blacksquare					\top			=
Installation of	DIPRoI										Т													\top							\exists
Beamlines and Experimental	EIS TIMEX										Т																	\top	Т		╕
Stations in EHF	EIS TIMER																														
	LDM		Ţ		Ţ	j				į			Ţ		ļ	ļ	Ţ	Ţ		1	†										\Box
	2011: FERMI TRANSITION TO OPERATION																														
	FERMI FEL-1 first user experiment from 01.01.11																														
	X-band accelerating section in linac tunnel		Ĺ			Ĺ				Ĺ						Ĺ					<u>i</u>					Ĺ					
	Completion of SFEL-2 installation																											\perp			
Installation,	FEL-2 installation without undulators																														
Commissioning	Commissioning FEL-1, FEL-2, User Exp FEL-1										Т																\Box	\bot			
and	FEL-2 undulators installation																							\perp							
User Experiments	Commissioning FEL-1, FEL-2, User Exp FEL-1																							\perp					\perp		
CXPERIMENTS	Maintenance and installation																							\perp				88			
	50 Hz PC Gun installation		T																					\perp							╝
	Commissioning FEL-2, User Experiment FEL-1		Ţ										Ţ											\perp							
	FERMI FEL-2 first user experiment from OCT 11	Ì	İ		Ì	İ				İ		İ	İ				j				İ				İ						

LEGENDA - Colour coding
Civil Engineering
Installation activities in Linac Tunnel and Klystron Gallery
Installation activities in Undulator Hall, SG (SSA, USA), ESA
Installation activities in Experimental Hall
Commissioning phases in 2009 and 2010
Commissioning and users' experiments in 2011 transition phase
Modifications compared to previous release of the Master plan: new
tasks, delays or advances on existing tasks
Past activities
Present date line

		LEGENDA	A - Acronyms
CO	Co-Occupancy	SG	Service Gallery
ВО	Beneficial Occupancy	SSA	Spreader Service Area
EM	Electric and Mechanic plants	SLR	Seed Laser Room
	commissioned	UTDR	Undulator Timing and Diagnostic Room
		USA	Undulator Service Area
LT	Linac Tunnel		
Lm	Linac Sector number m	UH	Undulator Hall
LH	Laser Heater	SCL	Spreader Common Line
BC	Bunch Compressor	SFEL-1	Spreader FEL-1
DBD	Diagnostic Beam Dump	SFEL-2	Spreader FEL-2
TLS	Transport Line Straight	IUFEL-1	IntraUndulator sections FEL-1
		MBD	Main Beam Dump
KG	Klystron Gallery	PADReS	Photon Analysis Delivery and Reduction System
KGnn	RF Plant number nn	EH	Experimental Hall
		ESA	Experimental Service Area
		DIPRoI	Dlffraction and PRojection Imaging
		EIS	Elastic and Inelastic Scattering
		LDM	Low Density Matter

Installation/Commissioning Schedule Gelettra

									2010 FER	VI(@	ĐΕI	lettra Be	am	and Shutd	οv	vn schedule	,								
Gennaio January		Febbraio February			arzo arch		Aprile April		Maggio May		•	Giugno June		Luglio July		Agosto August		Settembre September		Ottobre October		Novembre November		Dicembre December	
	w	date M L N	W			w		w		w	date		w		W	date M L N	w		w		w		w	date M L N	w
L		Installation						2		I				eam possible ii	1							EH: PADReS			L
M		throug	h I	Main Be	<mark>leam Du</mark>	mr	and EH				PA 2		ty F	Hutch and EH				1						1	M
G	53		4	1		8	1	13		18	3		22	1	26		30	2	35		39		43	2	48 G
V 1							2				4			2				3 Comm.		1				3	V
S 2							3		1		5			3 4		4		4 Spread 5 -er and		2				4	S
D 3 L 4 Instal		1		1		_	5 Inetall		3		7	,		5		2 Install		5 -er and 6 FEL-1	H	4		1	\dashv	5 6	D
L 4 Instal. M 5 L1		2		2			5 Install 6 BC1		4		8			6		3 HE RF		7 through		5		2		7	М
M 6 through		3 CoOcc UH		3			7 chicane		5		9	and		7		4 Defl-		8 MBD		6		3		8	M
G 7 BC1	1	5 Comm.	5	5 4		9	8 and C5;	14	6 7	18	10 11	HOIH LE	23	8 9	27	5 ectors 6 Comple-	31	9 10	36	7 8	40	4 5	44	9 10	49 G V
S 9 -meter		6 L1		6			9 temp 10 wall		8		12	unougn		10		7 te FEL-1		11		9		6		11	S
D 10		7 through		7			11 removal		9		13			11		8 and		12		10		7		12	D
L 11		8 BC1 Spectro		8			12		10		14			12		g FEL-1 10 Diagn-		13		11		8 Comm.		13	L
M 12 M 13		9 Spectro		9			13 14		11 12		15 16			13 14		10 Diagn-		14 15		12 13		9 FEL-1		14 15	M
G 14	2		6	5 11		10	15	15		19	17		24		28		32		37		41	and	45		50 G
V 15		12		12			16		14		18			16		13		17		15		12		17	V
S 16 D 17		13 14		13 Co	OOcc SG		17 18 CoOcc EH		15 16		19 20			17 18		14 15		18 19		16 17		13 14		18 19	S
L 18	Н	15		15		\exists	19		17		21			19		16		20		18	Н	15	\exists	20	L
M 19		16		16			20		18		22	2		20		17		21		19 Install		16		21	M
M 20 G 21	3	17 18	7	17		11	21 22	16	19 20	20	23 24		25	21 22		18 19	33	22 23	38	20 FEL-1 21 Undul-	42	17 18	46	22 23	51 G
V 22	3	19	1	19		"	23	16	21	20	25		25	23	29	20	33	24	38	22 ators,	42	19	46	24	51 U
S 23		20		20			24 25	1	22		26			24		21		25		23 colli-		20		25	S
D 24	L	21		21		4			23	Щ	27			25		22		26		24 mators	L	21	_	26	D
L 25 M 26		22 23		22 23			26 27		24 25		28 29			26 27		23 24		27 28		25 26		22 23		27 28	M
M 27	4	24	8			12	28	17	26	21		BEN. OCC.	26		30		34	29	39		43	24	47		52 M
G 28		25		25			29		27 Electric ON					29		26		30		28		25		30	G
V 29 S 30		26 27		26 27		F	30		28 29					30 31		27 28				29 30	1	26 27	ŀ	31	V S
D 31		28		28					30 Mech. ON					01		29				31		28			D
L				29					31							30						29			L
M				30 31												31						30			M

LEGENDA:

Shutdown periods: NO BEAM

Commissioning from Gun to BC1: parallel installation downstream temporary wall Commissioning through MBD: parallel installation only in Experimental Hall

Milestones MAIN FERMI Yard (Collini)

For details of installation and commissioning phases see FERMI MASTER PLAN

The FERMI Team

117 people in the picture, but not everyone was able to make it out that day