#### XVII ESLS workshop, DESY, 26th-27th November'09



#### **Re-circulating Linac Option**

Deepa Angal-Kalinin & Peter Williams ASTeC, STFC, Daresbury Laboratory & The Cockcroft Institute





### **Re-circulating Linac Design**

High repetition rate requirements of NLS need SCRF Linac => re-circulation reduces capital and running cost

□ Technical feasibility of re-circulating linac option is under investigation compared to straight through Linac baseline option

□ Possibility to extract at different energies (1.2GeV and 2.2 GeV) & natural upgrade path to higher energies

□Additional issues compared to straight through option

Combining and separating different energy beams

**CSR** and ISR in the arcs, mergers/combiners & extraction

Bunch compression and linearisation scheme restricted

□ Jitter tolerances due to extra transport?



### **Re-circulation Linac Layout**



Inject at ~200 MeV, two passes through 1 GeV

### Injector, Linac module, LH, 3HC, BC1



Choice of beam energy at injection > 200 MeV for minimising longitudinal space charge & optimum accelerating modules.
LH place holder. Reduced need due to incoherent energy spread from the arcs.



## **Injection Dogleg**



□Need to merge with the high energy beam; Ratio of energies = 6□ Achromatic and isochronous dogleg design Optimised number, locations and strengths of sextupoles (energy spread~0.9%)using 'Simplex algorithm' to minimise the emittance growth due to chromatic effects.

#### **Beam Extraction**



□ First dipole after the Linac separates 1.2 and 2.2 GeV beams.

□ 1.2 GeV beam is matched into the arc.

□ R56 = 5 mm for matching to arcs and 0.002 mm for extraction.

Optimised locations and strengths of sextupoles in matching to the arc (energy spread~0.4%) to minimise on emittances.

### **Re-circulation Linac**

8 TESLA type cavities, maximum gradient 17.5 MV/m
FODO between cavities optimised at two different energies to minimise CSR blow up in first extraction dipole whilst simultaneously keeping 1.2 GeV twiss sensible.



## **Arc Design**



□ Considered arcs from 4GLS, BESSY, LUX & DLS low-alpha – **BESSY best** 

- □ Four triple bend achromats, low dispersion
- □ Wider footprint, non-isochronous

ISR emittance growth from both arcs3.6%

 Energy spread due to ISR ~5x10<sup>-5</sup>; useful for suppression of microbunching
Two sextupole families to correct the chromaticities

#### **Return pass**

□ Return transport connecting arcs is simple FODO-cells with phase advance of 45°. Possible to include few screens to study the beam properties at 1.2 GeV.

□ Plan to have isochronous path length adjuster. 4GLS design, based on moving girders - would give independent phase control on second pass of linac (this control has been assumed in the simulations)

Path length corrector



#### Machine Optics (start to BC3 exit)



### **Design optimisation**

Need constant slice parameters on a length of 100 fs – or longer to accommodate the seed pulse and jitter
No residual (or very small) energy chirp

□Tracking using ELEGANT from 135 MeV including CSR, ISR and Linac wakefields.

□ Manual longitudinal optimisation to progressively compress, whilst keeping bunch above 2ps through arcs and minimising projected energy spread at end, most compression is at BC2.



### **Simulation results : projected emittances**



Final normalised projected emittances in x/y = 0.56/0.43 mm.mrad

NLS

ESLS, DESY, 26<sup>th</sup>-27<sup>th</sup> November 2009

### **Bunch evolution : 100 k particle tracking**



#### **Bunch Parameters at the exit of BC3**



# Summary

- □ The re-circulator design is very close to achieving simultaneous bunch properties required for the FEL operation.
- Presently working on automatic optimisation to tailor bunch to "flat top" at 1kA and obtain less energy chirp on the bunch.
- Next steps
  - to include collimation + beam switchyard (same design as the straight through Linac baseline option)
  - estimate the jitter tolerances
  - pass a bunch through FEL simulations





#### Thank you for your attention



ESLS, DESY, 26<sup>th</sup>-27<sup>th</sup> November 2009