

ASTRID, history and new developmentASTRID2

Schedule and status

History and new development

- The synchrotron/storage ring ASTRID has been in operation since 1990, in the last 5 years as a UV/soft x-ray source only.
- A new underground building for a new ring was made several years ago, including infrastructure as stable concrete floor, water cooling, air-conditioning, power etc.
- Dec. 2008: Grant of ~5 M€ for
 - 1. ASTRID2, 2. transfer beamline, 3. ASTRID modifications,
 - 4. beamline modifications

Schedule for ASTRID2

- Nov. 2009:
 - Theoretical design finished, parameters frozen
 - \checkmark detailed engineering design going on
 - ✓ order/tender most accelerator components
- Beginning 2011 first injection in ASTRID2
- 2012 First beamline operational on ASTRID2
- 2013 All beamlines transferred to ASTRID2
- A new AMO beamline and a new materials/nano beamline is being considered

26 NOVEMBER, 2009

ASTRIDs below ground

26 NOVEMBER, 2009

Underground laboratory

5

26 NOVEMBER, 2009

ASTRID2

Parameter	ASTRID2	ASTRID
Energy	580 MeV	580 MeV
Circumference	45.7 m	40.0 m
Current	200 mA	200 mA
Lifetime	Top-up (~2hours)	~100 hours
Horizontal emittance	12 nm	140 nm
Characteristic energy Dipole/MPW	0.24/0.45 keV	0.36 keV
Characteristic wavelength	5.2/2.8 nm	3.5 nm
Straight sections (number and length)	4x3.0 m	1×2.0 m

8

ASTRID-ASTRID2 comparison

$\mathsf{ASTRID} \to \mathsf{ASTRID2}$

- ASTRID2 will be operated in top-up mode using ASTRID as a booster
- The cycle time of ASTRID is relatively slow, ~10 s
- The beam will be extracted from ASTRID with a fast extraction kicker (2 mrad, 580 MeV, <50ns) extracting the beam after 1 ¹/₄ turn using the ASTRID DC injection septum
- A transfer line has been designed to take the beam below ASTRID2 injecting into ASTRID2 from the inside.
- Beam is injected into ASTRID2 with a 3 kicker local bump

$\mathsf{ASTRID} \to \mathsf{ASTRID2}$

ASTRID2 injection

11

ASTRID2 injection

12

26 NOVEMBER, 2009

ASTRID2 – lattice

- •DBA
- •6-fold symmetry
- •Each period:
- •2 combined function dipole magnets (+ poleface winding)
- •2 quadrupole families
- •2 sextupole families
- •4 H/V correctors
- •4 BPM's

26 NOVEMBER, 2009

ASTRID2 – insertion devices

> Undulator

60 poles, 55 mm period, 0.6 T, 22 mm gap, (K=2.87) tuneshift ~0.009

>Multi-Pole Wiggler

12 poles, 116 mm period, 2 T, 12 mm gap, (K=21.7) tuneshift ~0.04

26 NOVEMBER, 2009

ASTRID2 – compensation of insertion devices

- **Compensate tune**
- and beta beat with
- global tune
- correction and
- local beta
- correction using
- pole-face windings.

Insertion devices modeled as a long purely vertically focusing element (matrix)

26 NOVEMBER, 2009

ASTRID2 – dynamic aperture

Dynamic aperture Matlab AT toolbox.

RF system

- 105 MHz (like ASTRID)
- Main RF parameters
- Harmonic:
 - RF voltage:
 - Synchrotron radiation power:~1.4 kWCavity power:<12 kW</td>
- Tube-based FM transmitter (triode), Cheaper, robust
- New LLRF: digital, analog-digital
- We are establishing a collaboration with MAXLAB looking into commercially built 100-MHz EBW cavities

16

50-200 kV

Also 300 MHz Landau cavity

26 NOVEMBER, 2009

ASTRID2 Girder design

Vacuum system

- In-situ bake-out system
- We are planning extensive use of NEG coating in
 - straight sections
 - "straight parts" of arc's

Conclusions

- The ASTRID2 project is now funded since 11 months
- Thanks to the pre-design, parameters have been fixed and most accelerator components have been ordered/tendered
- As building with infrastructure exist, Injection into ASTRID2 should start in early 2011
- Thanks to everybody in the ESLS community for assistance and useful advice