

An Update On ALICE

Accelerators and Lasers In Combined

Experiments

Susan Smith Daresbury Laboratory

Content

- Commissioning Progress
- Beyond energy recovery
- Future development
- Summary

First Circulation 13th December 2009

Full Energy Recovery

• Full energy recovery (21st December 2008)

Full energy recovery has been established at 21MeV beam energy and several bunch charges up to 20pC.

Higher bunch charges were not attempted because of the beam loading effects in the injector SC booster cavities

Gun voltage (~230kV)

- Lower than nominal (230kV instead of 350kV) is due to
 - Stanford ceramic
 - Field emitter on the cathode
- Both do not help emittance and injector set up

Gun voltage (~230kV)

- Lower than nominal (230kV instead of 350kV) is due to
 - Stanford ceramic
 - Field emitter on the cathode
- Both do not help emittance and injector set up

CPI ceramic tests

Stanford

Field emission from the cathode

• Solution:

 \bullet disperse most of FE within the gun beamline, increasing SOL-01 field, reduce gun voltage to ${\sim}230 kV$

- Increased SOL-01 settings:
 - Not good for lower (<80pC) bunch charges due to transverse cross-over. Approximately optimal for Q \sim 80pC

SOL-01=2.6A

SOL-01=2.9A

SOL-01 = 3.3A

FE electron after acceleration booster at various SOL-01 (YAG-02)

INJ-2: FE only

FE electrons do not appear to be a factor after acceleration in the main linac

INJ-2 : Beam+FE

Science & Technology Facilities Council

Photocathode Preparation Facility:- First results

Commissioned in April 2009

A GaAs photocathode loaded from atmosphere without chemical etching and cleaned with atomic hydrogen

Activated with Cs-O "Yo-Yo" procedure

Qe=15% at λ =635 nm

Emittance

- Beam characterisation was not a priority
- Very crude measurements made so far (slit & Q-scan)
- Both indicate emittance much larger than expected from the model
- No optimisation was attempted yet ...
 - SOL-01 > 280G (not good for $Q \sim 10-30 pC$)
 - laser beam offset ?
 - INJ optimisation

25

Field Emission in SC linac

- Major problem is the field emission in the main linac
 - Limited to ~23 MeV acceleration total
 - Have to reduce the energy gain in the booster accordingly (set by beam energy ratio in injection and extraction chicanes)
- February 2009

etore mo

- Gun: 230keV
 after Booster: 4.8 MeV
 after Main linac: 20.8 MeV
- July 2009 Further conditioning and short pulse 3 ms RF operation
 - Gun : 230keV
 - after Booster: 7 MeV
 - after Main linac : 29.8 MeV
- Propose to carryout helium processing of SRF cavities in 2010

Optimisation of RF System

beam loading

a) Beam loading evident

no beam loading

b) After optimisation to to keep beam energy (green) stable

Optimisation of the LLRF system response & external quality factors of the booster

extended operation of the machine to \sim 40 pC bunch charge and up to 100 µs train lengths in an energy recovery regime

International Module Collaboration

Gun Parameters

	Nominal Parameters	Current parameters
Gun DC Voltage	350kV	350kV with nominal HV ceramic; currently gun operates at 230kV
Nominal bunch charge	80pC	80pC (~200pC potentially be delivered)
Laser Nd:YVO4 (2nd harmonic)	532nm	532nm
Laser spot	4.1mm FWHM	Variable
Laser pulse length	28ps FWHM	28ps with laser pulse stacker
Quantum Efficiency	1-3%	$\begin{array}{c} \sim 4\% \\ (\sim 15\% \text{ in the lab conditions}) \end{array}$

ALICE parameters

Injector Energy	8.35MeV	Currently 7 MeV
Total beam energy	35MeV	Currently 29.8MeV
RF frequency	1.3GHz	1.3GHZ
Bunch repetition frequency	81.25MHz	81.25MHz
Train Length	0-100µs	Up to 100µs at lower bunch charges
Train repetition frequency	1-20Hz	1-20Hz
Compressed bunch length	<1ps @80pC	To be measured
Peak current in compressed bunch	150A	To be measured
Maximum Average Current	13 μΑ	
Max. current within the train	6.5mA	>6.5mA but at shorter train lengths

ALICE : Status and projections

- ALICE is now operational in full energy recovery mode routinely at 40 pC and 29.8 MeV
- Beam loading is still an issue and requires careful optimisation for 40 pC. Improvement expected with feed-forward system.
- Removing limitations (changing gun ceramic, cathode) is a risky business
- FE limitations cannot be removed until 2010 (main linac)
- These limitations will (almost certainly) stay "as is" until the next long shutdown in mid 2010

ALICE – not just Energy Recovery Linac ...

Science & Technology Facilities Council

ALICE THz Source

THz Programme & Tissue Culture Facility on ALICE

A world-unique facility allowing the effect of high peak power / high rep rate THz on living cells to be investigated.

THz Detected In the Diagnostics Room

•THz coherently enhanced radiation (February 2009)

Quadratic dependence of the THz signal amplitude on the bunch charge. Typical signal from THz detector (bolometer)

THz Programme & Tissue Culture Facility on ALICE

A world-unique facility allowing the effect of high peak power / high rep rate THz on living cells to be investigated.

Compton Backscattering Experiment

Accelerator Science and Technology Centre

Compton Backscattering Experiment

head on configuration

90° configuration

Compton Backscattering Experiment

Alice Accelerators and Lasers In Combined Experiments

1st Compton X-rays 15th Nov 2009

X-rays from electron beam-TW laser scattering

Scan through the electron beam using laser timing

Accelerator Science and Technology Centre

Physicists at Daresbury, working on ALICE are celebrating after successfully colliding electrons and a powerful laser beam to produce short-pulsed X-rays.

FEL Commissioning 2010

Fixed gap JLAB wiggler

Installed 18th Nov 2009

Variable gap carriage

Future developments

ALICE: Future R & D

- RF feed-forward system, injector optimisation and characterisation
- IR FEL commissioning
- Electro-optic diagnostic commissioning
- THz development
 - THz transport beamline optimisation, THz spectra
 - Tissue Culture Facility (TCF) experiments (human tissue exp)
- Laser-THz synchronisation/pump-probe experiments
 - (for novel solar cells research; collaboration-Manchester Uni.)
- •Helium processing of LINAC cavities
- •EMMA commissioning & research

World's first non-scaling FFAG

- Installation of a new improved SC RF cryomodule
- Installation of large ceramic1kHz operation
- Other smaller scale projects in parallel with EMMA and photo-science R&D
- •Installation of the gun load lock system & diagnostics line

EMMA

World's First Non scaling-FFAG

Summary

- Commissioning
 - Energy recovery
 - Achieved 1st THz in Diagnostics Room
 - Initial characterisation of beam
 - RF conditioning & optimisation
- Future experiments
 - Accelerator science R&D
 - Photon science R&D
 - Technology developments

