

Update on the UK's New Light Source Project

R. P. Walker, Diamond Light Source

http://www.newlightsource.org

ESLS-XVII, DESY, 26th-27th November 2009

- Official Launch of the NLS Project, April '08
- Science Workshops, May June '08
- Draft Science Case published, Sep. '08
- ♦ Science Case approved by the Physical And Life Sciences (PALS) committee and Science Board of the STFC, Oct. Nov. '08
 → approval to proceed to the design stage
- Science Community Meeting, April '09
- 1st Technical Advisory Committee, June '09
- Science Case and Outline Facility Design, July '09
- Review by STFC, Oct. Dec. '09

Baseline Specification for NLS to Match the Science Case

- High brightness (>10¹¹ photons/pulse) in 50eV 1keV range
- Harmonic radiation to 3keV (>10⁸ ph/pulse) and 5keV (>10⁶ ph/pulse)
- Short pulse duration ~20fs
- Smooth wavelength scanning across entire spectral range
- Synchronized to ultra-fast light sources covering THz- deep UV
- 1KHz repetition rate with even pulse spacing initially, increasing to 10 – 100 kHz in the future
- Fully coherent (transverse and longitudinal), reproducible pulses

- Free-Electron Lasers to cover the range 50 eV to 1 keV : FEL1: 50 - 300 eV FEL2: 250 - 850 eV FEL3: 430 - 1000 eV
- harmonics up to 5 keV
- independently tuneable through undulator gap variation
- variable polarization using APPLE-II undulators
- seeded in order to provide longitudinal coherence, in 20 fs pulses
- Conventional laser sources + HHG for 60 meV (20 μm) 50 eV
- IR/THz sources, e- beam generated and synchronised to the FELs, from 20 – 500 μm

Schematic Layout

FEL Scheme

- common electron energy for all 3 FELs, allows simultaneous operation
- HHG seeding with realistic laser parameters, up to 100 eV
- harmonic cascade scheme to reach up to 1 keV

Upgrade Paths

- Higher photon energies, at least to 1.5 keV, later > 2 keV
 - space will be left for an extension of the linac to reach higher energy
- Increased rep. rate, ≥ 10 kHz, up to 1 MHz

- requires higher repetition rate gun, lasers (photocathode, seeding and pump-probe), switching magnets <u>but the basic linac and</u> <u>infrastructure remain the same</u>

- Shorter pulses, ≤ 1 fs
 - space will be left to incorporate laser slicing or other techniques
- Additional FELs and experimental stations
 - space will be left for a second FEL and experimental hall

Stage 1 Injector: modified FLASH/PITZ N/C L-band Gun

PITZ Gun4 (DESY)

NLS Gun1

- 1. Cell lengths optimised for smaller emittance
- 2. Minor improvement of cooling-water channel
- 3. Iris shape to be elliptic for less surface field
- 4. Opening for cathode insertion improved for no scratch on the plug
- 5. Larger coupler radius for reducing wakefield

J-H. Han, DLS

Two options are being considered:

- 1) LBNL normal conducting VHF gun cw 187 MHz
- 2) Superconducting L-band gun

MOPC066

Proceedings of EPAC08, Genoa, Italy

CONCEPTUAL DESIGN OF A HIGH AVERAGE CURRENT SRF GUN

C. D. Beard[#], J.W. McKenzie, B.L. Militsyn, B.D. Muratori, STFC Daresbury Laboratory, Warrington, WA4 4AD, UK

B.L. Militsyn, ASTeC

D. Angal-Kalinin et al., ASTeC

Undulator

- APPLE-II is the current choice
- Crossed undulator scheme studied but rejected
- APPLE-III and DELTA designs, as well as in-vacuum solutions, are also being considered
- Effects of wakefields are also being assessed

40% higher field but: unproven

(A. B. Temnykh, PRSTAB 11, 120702, 2008)

- ~ 70% higher field but:
- short prototype only exists *J. Clarke, ASTeC*
- difficult to measure
- how to shim ?

- Astra calculations to optimise the injector including spacecharge effects.
- Elegant calculations to optimise the beam quality at the beginning of the undulators including CSR, longitudinal space charge, wake-fields.
- GENESIS calculations of the FEL to validate the optimisation with full start-to-end time dependent simulations.

0.2 nC Standard Bunch

Jitter Calculations (Gun+Linac)

Full start-to-end jitter calculations in progress

FEL Output Power inc. Harmonics

635 m

Summary

- A World-class Facility *the <u>only</u> facility providing:*
 - soft X-ray operation up to 1 keV in the fundamental
 - high repetition frequency of regularly spaced pulses
 - multiple FELs operating independently
 - synchronised THz/IR + conventional lasers + FELs
 - seeded operation providing longitudinal coherence
- Baseline requirements can be met by a machine that is essentially buildable "now", based on proven technology but with some further development to optimise performance, reduce costs and risk.
- Designed-in upgradeability for higher rep. rate, increased number of beamlines, higher photon energy etc.

- Science case and outline design under review by STFC PALS Committee & Science Board, as part of an overall prioritisation exercise. Result expected Dec. 16th.
- 2nd NLS TAC meeting, Dec. '09
- Conceptual Design Report in March 2010.
- Initiate a 2-year Preparation Phase in April 2010 (hopefully):
 - Technology Development in key areas to mitigate risks, reduce costs and optimise the design.
 - Extend national and international engagement.
 - Develop a fully costed proposal and business case.
 - Decide on location.

NLS Source Design Team

D. Angal-Kalinin^{1,5}, R. Bartolini^{2,4}, N. Bliss⁵, P. T. Bonner², M.A. Bowler⁵,
C. Christou², J.A. Clarke^{1,5}, J.L. Collier⁵, G.P. Diakun⁵, D.J. Dunning^{1,5},
B.D. Fell⁵, C.A. Froud⁵, A.R. Goulden^{1,5}, J-H. Han², G.J. Hirst⁵,
D.M. Holland⁵, F. Jackson^{1,5}, S.P. Jamison^{1,5}, J.K. Jones^{1,5}, J. Kay²,
J.P. Marangos³, K.B. Marinov^{1,5}, I.P. Martin^{2,4}, P.A. McIntosh^{1,5},
J.W. McKenzie^{1,5}, B.W.J. McNeil⁶, B.L. Militsyn^{1,5}, A.J. Moss^{1,5},
B.D. Muratori^{1,5}, S.M. Pattalwar^{1,5}, M.W. Poole^{1,5}, G. Rehm², M.D. Roper⁵,
J. Rowland², E.L. Springate⁵, J.W.G. Tisch³, N.R. Thompson^{1,5},

¹ Cockcroft Institute
 ² Diamond Light Source
 ³ Imperial College
 ⁴ John Adams Institute
 ⁵ STFC
 ⁶ University of Strathclyde