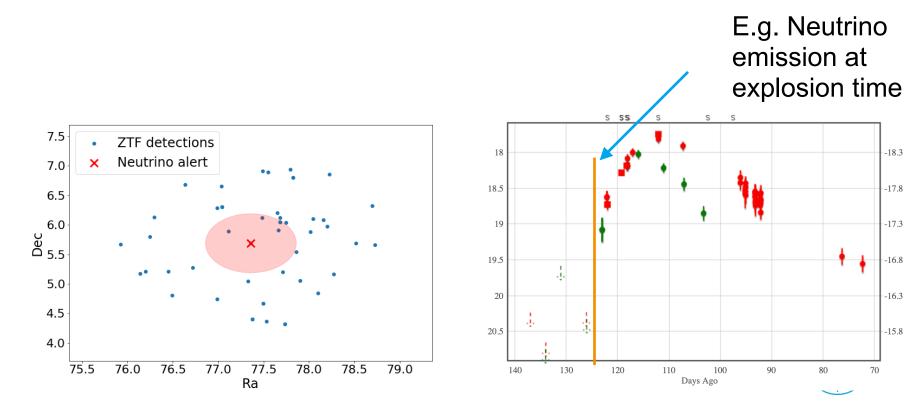
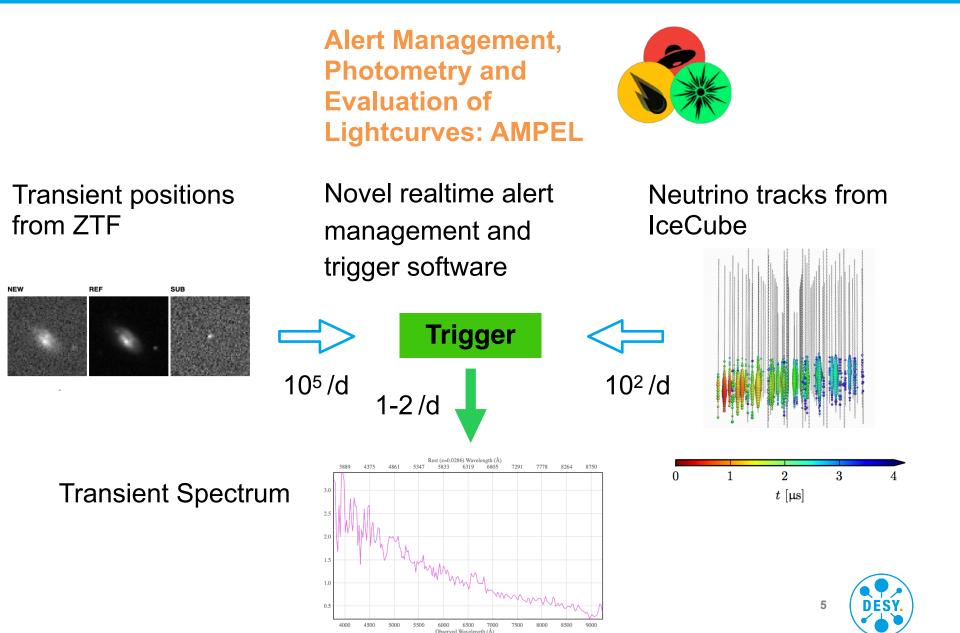

AMPEL - ZTF/IceCube program

Ludwig Rauch Berlin, 23.05.2019

- > We received ~7 IceCube alerts since start of ZTF
- > One could be followed-up: no interesting candidates identified
- Reasons for non-observations: Sun distance too close, IceCube retractions, ZTF offline


Туре	date	RA	Dec	Error	Comments
Doublet	2018-06-11 23:36:04.87	255.63	13.32	0.90	observed
EHE	2018-09-08 19:59:31.84	145.77	-2.52	0.34	Sun distance 22.68 deg
HESE	2018-10-14 11:52:19.07	225.18	-34.79	1.22	Sun distance 35.73 deg
EHE	2018-10-23 16:37:32.65	269.84	-8.89	0.29	camera down
HESE	2018-10-31 02:02:51.41	182.79	-68.39	1.22	retracted
HESE	2019-01-24 03:44:35	307.19	-32.29	1.23	Sun distance 13 deg
HESE	2019-03-31 06:55:43	337.79	-21.08	2.624	Sun too close


AMPEL ToO filter (T0):

AMPEL follow up analysis:

- > Neutrino detection triggers search
- Cone search in neutrino uncertainty contour
- Require no prior photometric detections of object

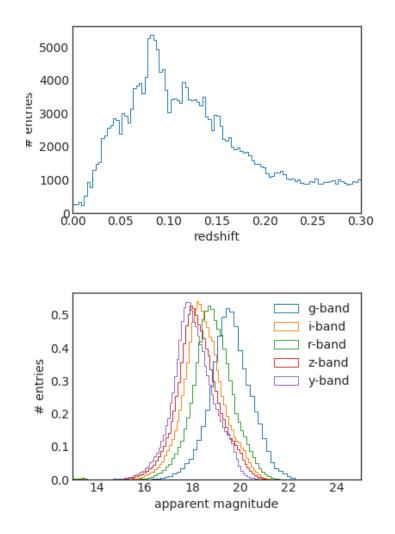
Real-time Neutrino Correlation with IceCube

Filter: Primary data reduction applied to all alerts

Parameters # number of previous detections # minimum duration of alert detection history [days] Information contained in alert # maximum duration of alert detection history [days] # real bogus score from machine learning # sexctrator FWHM (assume Gaussian) [pix] # Difference: magap - magpsf [mag] # number of bad pixels in a 5 x 5 pixel stamp # distance to nearest solar system object [arcsec] # minium distance from galactic plane. Set to negative to disable cut. #search radius for GAIA DR2 matching [arcsec] Automatic GAIA match # significance of proper motion detection of GAIA counterpart [sigma] # significance of parallax detection of GAIA counterpart [sigma] # min qmaq for normalized distance cut of GAIA counterparts [mag] # max gmag for normalized distance cut of GAIA counterparts [mag] # maximum allowed noise (expressed as significance) for Gaia match to be trusted # maximum distance to closest PS1 source for SG score veto [arcsec] # maximum allowed SG score for PS1 source within PS1 SGVETO RAD Automatic PanStarrs match # reject alerts if the three PS1 sources are all within this radius [arcsec]

Perform maximum likelihood analysis

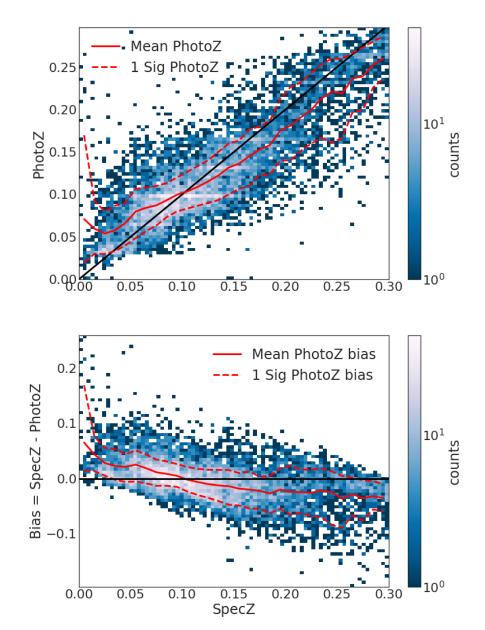
Maximum likelihood function


$$\mathcal{S}(E_{\nu}, \Delta T, \Delta \Psi, \sigma) = \underbrace{\frac{1}{2\pi\sigma^{2}} e^{(\Delta\Psi)^{2}/(2\sigma^{2})}}_{2\pi\sigma^{2}} \cdot \underbrace{\epsilon_{sig}(E, \theta, \gamma)}_{e_{sig}(E, \theta, \gamma)} \cdot \underbrace{Box(t_{start}, t_{end})}_{Box(t_{start}, t_{end})}$$

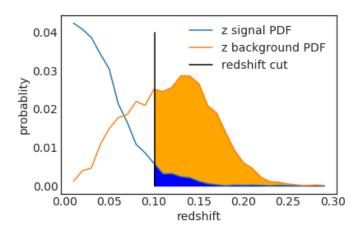
$$\mathcal{B}(E_{\nu}, \Delta T, \Delta\Psi) = \underbrace{\frac{\mathcal{P}(\sin\theta)}{2\pi}}_{TS} \cdot \underbrace{\epsilon_{BG}(E, \theta)}_{e_{BG}(E, \theta)} \cdot \underbrace{\epsilon_{BG}(E, \theta)}_{IO^{-1}} = -2 \sum_{i=0}^{N} \log\left(1 + \frac{ns}{N}\left(\frac{\mathcal{S}}{\mathcal{B}} - 1\right)\right) \underbrace{\int_{IO^{-1}}^{IO^{-1}} \underbrace{\int_{IO^{-1}}^{OUt \ TS > 1} - \frac{Half \ Chi-Squared}{IO^{-1}}}_{IO^{-1}} \underbrace{\int_{IO^{-1}}^{OUt \ TS > 1} - \frac{Half \ Chi-Squared}{IO^{-1}}}_{IO^{-1}} \underbrace{\int_{IO^{-1}}^{IO^{-1}} \underbrace{IO^{-1}} \underbrace{\int_{IO^{-1}}^{IO^{-1}} \underbrace{IO^{-1}} \underbrace{IO^{-1}}$$

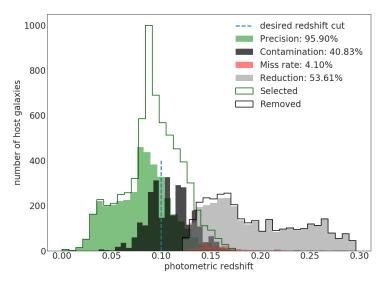
Photometric redshift estimation (T2)

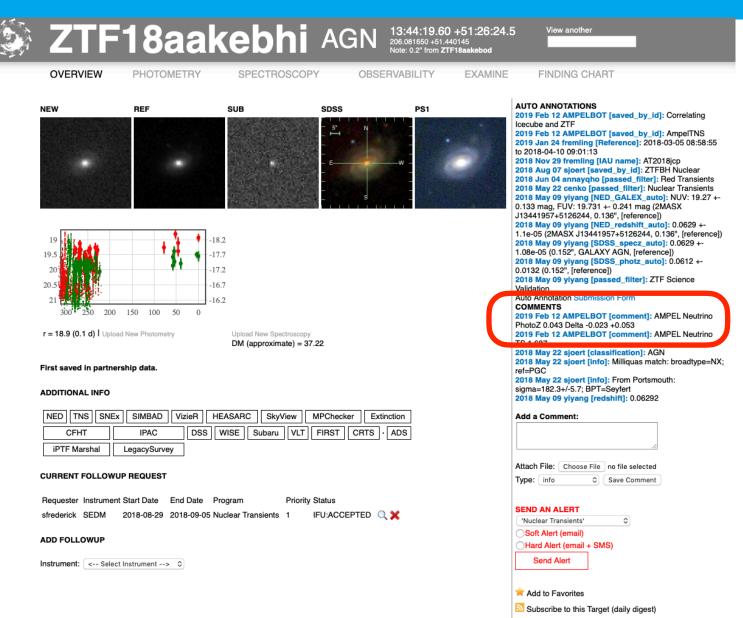
- SDSS and BOSS data
- > 3 x 10⁶ Galaxies with spectroscopic redshift estimation and photometric data for u,g,r,i,z filters
- No full sky coverage
- But good for training machine learning algorithms
 - Use Pan-STARRS catalogue for photometric data (g,r,i,z,y)



8


Results on training data


- Code is based on ANNZ2 package (developed by Iftach Sadeh et al.)
- Uses 100 random configurations of hyper parameters for boosted decision trees
- Trained BDTs are weighted according to their performance
- Software is embedded into AMPEL and optimised for computational speed.
- On average 0.5s per calculation
- Results on training data comparable to other results even though we are missing the u-band


Photometric redshift (T2)

- > Use photometric redshift for signal and background discrimination
- > At redshifts larger than z=0.1:
 - > Background: ~ 62 %
 - > Signal < 5%
- > Due to uncertainties of the redshift estimate we consider the error pdf
- Redshift cut on integral: Area of error pdf should be larger than 80% above a value of 0.1
- > Using the area reduces the background rejection efficiency but minimises false negative rate

Transient selection is pushed to GROWTH marshal (T3)

DESY

Subscribe to this Target (immediate alerts)

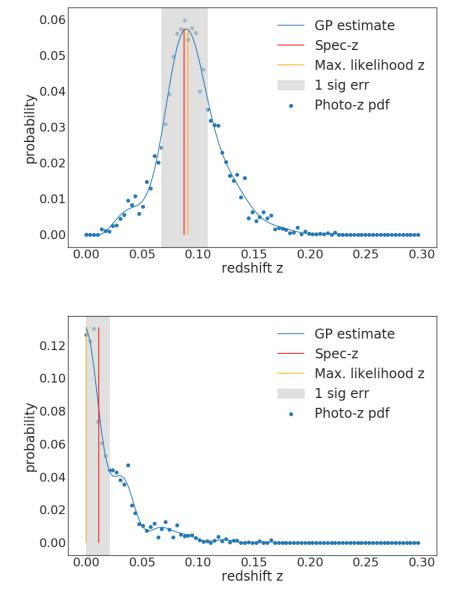
AMPEL supports two types of neutrino programs:

Target of Opportunity

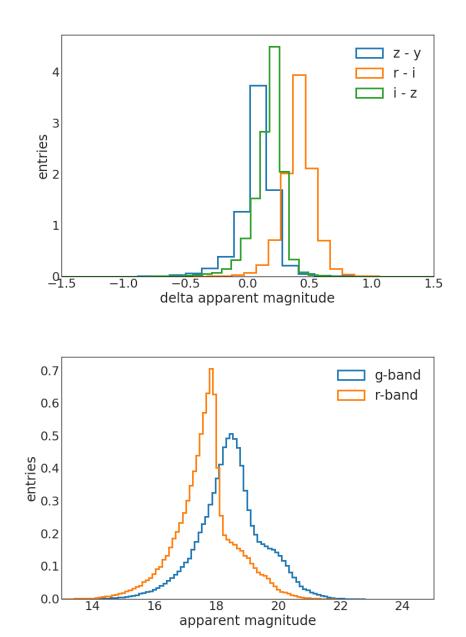
- Low rate of high-energy neutrinos
- High cadence of ZTF (3 days) allows to search for fast fading transients
- Spectroscopic classification available
- Large field of view to consider full error circles

HELMHOLTZ

Young Investigators


Stacking Analysis

- Continuous search for transients
- High rate of low-energy neutrinos
- Complete and magnitude limited transient catalogue


Uncertainty probability density function

- Uncertainty pdf estimated by KNN method:
 - Use 100 nearest neighbours in feature space
 - Use scatter of estimates as uncertainty estimation
- Photo-z estimation challenging at the boundaries at low redshifts (z=0) and high redshifts (z=0.3)
- Upper lower limits of the redshift can still provide viable information for transient selection!

MLM input parameters

- Photometry: g,r,i,z,y
- Input parameters (all Kron mag.)
 - g
 - r
 - z-y
 - r-i
 - i-z
- Possible improvements:
- Galex catalogue (two more bands)
- Use other parameters e.g. galaxy size

Neutrino alert stream:

> GOLD:

- > 50% probability of astrophysical origin
- ~10 events per year

> BRONZE:

- > 30% probability of astrophysical origin
- ~18 events per year
- Expected number of ZTF follow ups
 - > Only 50-75% of the 28 (due to sun distance, retractions, ...)

