

# Depleted Monolithic Active Pixel Sensors (DMAPS) for high rate and high radiation experiments at HL-LHC

and other works

Toko Hirono (University of Bonn)



- Introduction
- Development of depleted monolithic active pixel sensors
  - Motivation
  - Design concepts
  - Results of characterization
  - Conclusion
- Overview of other works
- Summary

#### Reference = Author



- Toko Hirono
  - 2000: Master's degree in astrophysics (Nagoya Uni., Japan)
    - Development of far-infrared detector for Japan's astronomical satellite



- Upgrade and development of control and data acquisition system for accelerators and beamlines
- Development of detector for high energy X-ray
- 2014-4/2019: PhD in high energy particle physics (Uni. Bonn, Germany)
  - Characterization of pixel detector for high energy particle physics experiments

### Works in many different fields Of physics





https://global.jaxa.jp/projects/sas/astro\_f/



http://xfel.riken.jp/eng/gallery/index.htm



### Common in my works

### Master thesis Ge:Ga 2D array detector



### SPring-8 CdTe hybrid pixel detector



### PhD. thesis

Monolithic active pixel sensor



### Study on semiconductor detectors



### Common in my works

### Master thesis Ge:Ga 2D array detector



### SPring-8 CdTe hybrid pixel detector



### PhD. thesis

Monolithic active pixel sensor



#### Study on semiconductor detectors



### **Deplete Monolithic Active Pixel Sensors (DMAPS)** for high rate and high radiation experiments at HL-LHC



### What is (Delpeted) Monolithic Active Pixel Sensors

Monolithic Active Pixel Sensor (MAPS)

### Hybrid Pixel Detector



MAPS has the sensing part and the readout electronics in one chip  $\rightarrow$  No fine pitch bump bonding between sensor and readout circuitry

- Less material
- Cost saving, high wafer throughput, schedule saving



### Requirements for pixel detector layers in high energy particle physics

STAR









|                                         | STAR               | ALICE-LHC          | ILC  | ATLAS-LHC          | ATLAS-HL-LHC         |                    |
|-----------------------------------------|--------------------|--------------------|------|--------------------|----------------------|--------------------|
|                                         |                    |                    |      |                    | Outer                | Inner              |
| Timing [ns]                             | 110                | 20 000             | 350  | 25                 | 25                   | 25                 |
| Particle Rate<br>[kHz/mm <sup>2</sup> ] | 3.8                | 10                 | 250  | 1000               | 1000                 | 10000              |
| Fluence [n <sub>eq</sub> /cm²]          | > 10 <sup>12</sup> | > 10 <sup>13</sup> | 1012 | 2x10 <sup>15</sup> | 1-2x10 <sup>15</sup> | 2x10 <sup>16</sup> |
| Ion. Dose [Mrad]                        | 0.09/year          | 0.7                | 0.4  | 80                 | 50-80                | >500               |

#### MAPS

- High spatial resolution
- Low hit-rate
- High radiation tolerance

#### Hybrid detector

- Fast response
- High hit-rate
- High radiation tolerance

Colloquium 2FHMA014/2019 /Toko Hirono/tokohirono@gmail.com



### Requirements for pixel detector layers in high energy particle physics

STAR



ALICE-LHC







|                                         | STAR               | ALICE-LHC          | ILC  | ATLAS-LHC          | ATLAS-HL-LHC         |                    |
|-----------------------------------------|--------------------|--------------------|------|--------------------|----------------------|--------------------|
|                                         |                    |                    |      |                    | Outer                | Inner              |
| Timing [ns]                             | 110                | 20 000             | 350  | 25                 | 25                   | 25                 |
| Particle Rate<br>[kHz/mm <sup>2</sup> ] | 3.8                | 10                 | 250  | 1000               | 1000                 | 10000              |
| Fluence [n <sub>eq</sub> /cm²]          | > 10 <sup>12</sup> | > 10 <sup>13</sup> | 1012 | 2x10 <sup>15</sup> | 1-2x10 <sup>15</sup> | 2x10 <sup>16</sup> |
| Ion. Dose [Mrad]                        | 0.09/year          | 0.7                | 0.4  | 80                 | 50-80                | >500               |
|                                         |                    |                    |      |                    |                      |                    |

#### In my PhD dissertation,

suitability of DMAPS for outer layers of future ATLAS Pixel Detectors has been investigated



### Why Depleted Monolithic Active Pixel Sensor?

#### Charge collection mainly by drift

Charge collection by drift is mandatory



Depleted Monolithic Active Pixel Sensor (DMAPS)



### Two DMAPS designs

### □ Large collection electrode design

### □ Small collection electrode design



Colloquium 2FHMA014/2019 /Toko Hirono/tokohirono@gmail.com



# Two DMAPS designs: Radiation hardness

- Large electrode design
  - = Small gap between electrode
  - = Readout electronics is isolated from substrate



- Short charge drift path 🙄
  - ightarrow High radiation hardness
- − High bias voltatge + highly resistive wafer 
  → Large depletion area
  - → Large signal

- Small electrode design
  - = Large gap (~pixel size) between electrodes



- Long charge drift path 🙁
- The electric field directing the collection electrode is weak at the pixel edge



### Two designs: Power consumption



**Small** electrode design = Small C<sub>det</sub>





### Prototypes I worked with





#### Large electrode design: LF-Monopix



- Fully monolithic
- LFoundry 150nm CMOS process
- Sensitive volume: >2kΩcm highly resistive substrate Thickness =  $100\mu$ m,  $200\mu$ m ( $725\mu$ m)
- Pixel size: 250μm × 50μm
- Bonn/CPPM/IRFU

### □ Small electrode design: TJ-Monopix



- Fully monolithic
- TowerJazz 180nm CMOS process w/ n<sup>-</sup> implant
- Sensitive volume: n<sup>-</sup> implant +  $1k\Omega$ cm epi-layer Thickness = ~20 $\mu$ m
- Pixel size: 40μm × 36μm
- Bonn/CERN



### In-Pixel electronics (Analog frontend)

#### Large electrode design: LF-Monopix



- Power-saving analog frontend
  - CSA
  - Discriminator + w/ 4-bit trim DAC

### **Small** electrode design: TJ-Monopix



- Space-saving, high-gain-low-noise analog frontend
  - Novel preamp and discriminator drive from ALPIDE
  - w/o trim DAC



# In-Pixel electronics (Digital R/O logics)

### Fully synchronous column drain architecture



Large electrode design: LF-Monopix
 R/O logic: 8-bit ToA and ToT (40MHz)

Small electrode design: TJ-Monopix

R/O logic: 6-bit ToA and ToT (40MHz)

Column drain architecture has been used in current ATLAS pixel readout chip (FE-I3) Hit-rate: Outer layers of ATLAS ITk pixel detectors  $\approx$  Current ATLAS ID pixel detectors



# In-Pixel electronics (Analog frontend)

#### Large electrode design: LF-Monopix



- Power-saving analog frontend
  - CSA
  - Discriminator + w/ 4-bit trim DAC

### Small electrode design: TJ-Monopix







- The analog frontend functioned even though the leakage current from the sensor is increased by NIEL irradiation
- Lowest threshold=350e (570e)
- Improvement in lowering threshold dispersion by eliminating the "non-Gaussian tail" of ENC distribution will be done in next prototype

### In-Pixel electronics (Analog frontend)



- Power-saving analog frontend
  - CSA

UNIVERSITÄT BONN

Discriminator + w/ 4-bit trim DAC

### □ Small electrode design: TJ-Monopix



- Space-saving, high-gain-low-noise analog frontend
  - Novel preamp and discriminator drive from ALPIDE
  - w/o trim DAC



### TID Radiation Hardness of Large electrode design (Gain & ENC)

#### X-ray irradiation up to 50Mrad

• Input transistor of CSA

- Irradiated and measured in room temperature
- Gain degradation: <5%
- Noise increase: ~25%
  (due to the increase of the leakage current)

### ightarrow No significant degradation in power-saving CSAs

#### Normalized gain and ENC





### Hit efficiency measurement



ELSA 2.5GeV electron beam + EUDET type beam telescope (DESY) + newly developed DAQ

- Suited for ELSA's beam intensity (~500 kHz, P. Wolf Bachelor thesis, Uni Bonn)
- Synchronizing MIMOSA readout for chips with a slow readout



□ Hit efficiency of LF-CPIX (slow R/O)









Hit efficiency

Neutron irradiated

- Noise < 0.1 Hz/pix

### Large electrode design: LF-Monopix (750μm)

#### **Un-irradiated**

Noise < 1.2 Hz/pix</li>



# Hit efficiency is as high as 98.9% after the NIEL irradiation $(10^{15}n_{eq}/cm^2)$

### □ Small electrode design: TJ-Monopix

**Un-irradiated** 

Noise < 10 Hz/pix</li>

#### Neutron irradiated

Noise < 10 Hz/pix</li>



doi: 10.1088/1748-0221/14/06/C06006

### Inefficiency was observed even before irradiation

#### 25.06.2019



🖲 AIDA<sup>\*\*\*</sup>





# Hit Efficiency degradation in **Small** electrode design

### □ TCAD simulation





# Conclusion for DMAPS development

- Two fully-monolithic large-scale matrixes have been tested to discuss the suitability of DMAPS as pixel detector in HL-LHC experiments
  - Large electrode design:
    - No significant degradation due to TID irradiation (50Mrad).
    - Hit efficiency is as high as 98.9% after NIEL irradiation (10<sup>15</sup>n<sub>eq</sub>/cm<sup>2</sup>)
  - Small electrode design:
    - The novel analog frontend and R/O logics functions in the large scale matrix but needs improvement in threshold dispersion and ENC
    - Inefficiency was observed but the improvement is on going

AND...



- A member of Control and Computing Division in SPring-8
  - Development and maintenance of control and DAQ system for accelerator and beamline

 $10^{3}$ 

- Detector development (2009-)



http://xfel.riken.jp/eng/gallery/index.html



Colloquium 2FHMA014/2019 /Toko Hirono/tokohirono@gmail.com



- A member of Control and Computing Division in SPring-8
  - Development and maintenance of control and DAQ system for accelerator and beamline operation

103

- Detector development (2009-)





# Other works (CdTe detectors)

#### CdTe has high sensitivity in 30-100 keV

Pixel detector CdTe + Custom-made ASIC



- ASIC simulation

#### doi: 10.1016/j.nima.2010.12.207



Characterization of prototypes



doi:10.1016/j.nima.2013.06.049

Strip detector CdTe + Mythen (PSI) readout





### Other works (DAQ board)

#### □ Upgrade and maintenance of control and DAQ system for beamlines





- Control system in SPring8 is "Message And Database Oriented Control Architecture"

Control system for XFEL was the largest for MADOCA  $\rightarrow$  Upgrade was proposed

T. Hirono et al, Proc of ICALEPCS 2013



Colloquium 2FHMA014/2019 /Toko Hirono/tokohirono@gmail.com



### Other works (Database system administration)

#### Database system administration

- Control system in SPring8 is "Message And Database Oriented Control Architecture"



#### Presentation & proceeding in a conference

#### MADOCA 互換の簡易データ収集システム MyCC の開発

#### DEVELOPMENT OF MYCC FOR A SIMPLE DATA ACQUISITION SYSTEM COMPATIBLE WITH MADOCA.

丸山 俊之<sup>4)</sup>、福井 達<sup>B)</sup>、広野 等子<sup>C)</sup>、山鹿光裕<sup>B)C)</sup> Toshiyuki Maruyama<sup>\*A)</sup>, Toru Fukui<sup>B)</sup>, Toko Hirono<sup>C)</sup>, Mitsuhiro Yamaga<sup>B)C) <sup>A)</sup> Nippon Gjutsu Center Co.,Ltd. <sup>B)</sup> RIKEN Harima Institute <sup>C)</sup> Japan Synchrotron Radiation Research Institute</sup>

#### Abstract

MADOCA framework is adopted in the SACLA control system. Data acquisition process is included in MADOCA framework. The data acquisition system is designed as extremely stable and scalable system. However, the knowledge of MADOCA and many procedures are needed in order to start the data acquisition. Therefore, we developed My Collector Client (MyCC) that is an easy-to-start data acquisition system with the same interface of MADOCA MyCC is a simple system composed of MADOCA compatible data collector client program, MADOCA compatible database API. MyDAQ2, and signal registration tools. A control system with MyCC can use the control program and signal registration data of the SACLA control system. Data collected by MyCC can use the control program and signal suitifactority.



- In doctoral thesis, depleted monolithic CMOS active pixel sensors (DMAPS) for high energy particle physics has been studied and further developments is on-going.
  - Characterization of silicon detectors
  - Development of hardware, firmware, and software for prototype chips and testing devices including upgrade of the beam telescope DAQ system
- Working experiences in a large accelerator facility would also helps future works
  - Development of hybrid pixel/strip detectors
  - Leading a project with 4 members





### Backup



### High Luminosity-LHC

### Upgrade of LHC



### Upgrade of Detector in LHC (ATLAS Detector)

Large area will be covered by detector with high granularity = pixel detector



#### Pixel detectors

https://twiki.cern.ch/twiki/bin/vie w/AtlasPublic/HiggsPublicResults

ATLAS ITk Pixel Detector:  $O \simeq 10m^2$ 

#### Monolithic CMOS active pixel sensors is an attractive option for pixel detector at HL-LHC



### Depletion of Si diode



#### Depletion width of planner Si p-n diode

High V + High  $\rho$   $\implies$  Sufficient depleted volume


### Hit efficiency measurement



ELSA 2.5GeV electron beam + EUDET type beam telescope + newly developed DAQ

- Suited for ELSA's beam intensity (~100 kHz)
- Synchronizing MIMOSA readout for chips with a slow readout

EUDET type telescope (DESY)



□ Hit efficiency of LF-CPIX (slow RO)



Timing performance required in HL-LHC

Responses in 1 Bunch Crossing (25 ns) will be counted as signal → Smallest signal in 1BCD = In-time threshold



UNIVERSITÄT BONN

Timing performance required in HL-LHC

Responses in 1 Bunch crossing (25 ns) will be counted as signal  $\rightarrow$  Smallest signal in 1BCD = In-time threshold



UNIVERSITÄT BONN

Timing performance required in HL-LHC



Responses in 1 Bunch crossing (25 ns) will be counted as signal → Smallest signal in 1BCID = In-time threshold





Conventional type

## ANALOG frontend for Large electrode design

#### Development of power saving and fast responding discriminator



New type

Self-biased differential amplifier





- Bias current: 4.5 μA
- Well tested but slow at threshold edge
- Self biased: < 4µA
- Faster especially at threshold edge



### TID Radiation Hardness of Large electrode design (Over Drive)







#### Un-tuned and tuned threshold dispersions of LF-CPIX (flavor=PMOS)



- The threshold is still tunable after TID=50Mrad ( $\sigma$ <100e *cf. readout noise*  $\approx$  200e)
- Increase of the tuned threshold dispersion is 20e



**Chip: MONOPIX** 

DAC setting: Default





### Radiation hardness (NIEL)

- The neutron irradiation test was done in JSI and the MonoPix were annealed 80min @60C
- I-V curve of MonoPix 10-4 1 x 10<sup>15</sup>n<sub>ea</sub>/cm<sup>2</sup> @-27.5 °C 10<sup>-5</sup> Leakage current[A/chip] 10<sup>-6</sup> 1E15neq/cm2 5E14neg/cm2 10<sup>-7</sup> 1E14neq/cm2 non-irradiated 10<sup>-8</sup> 10<sup>-9</sup> 10<sup>-10</sup> 50 100 150 200 0 Bias voltage[V]
  - Breakdown voltage is higher than 200V





### Radiation hardness (NIEL)



• The MPV is decreased after neutron irradiation of  $1 \times 10^{15} n_{eq}/cm^2$ .

Threshold: 1500 e

Bias: -200V (0 n<sub>eg</sub>/cm<sup>2</sup>)



**Chip: MONOPIX** 

DAC setting: Default





I-V curve of MonoPix

### Radiation hardness (NIEL)

- The neutron irradiation test was done in JSI and the MonoPix were annealed 80min @60C
- 10-4 1 x 10<sup>15</sup>n<sub>ea</sub>/cm<sup>2</sup> @-27.5 °C 10<sup>-5</sup> Leakage current[A/chip] 10<sup>-6</sup> 1E15neq/cm2 5E14neg/cm2 10<sup>-7</sup> 1E14neq/cm2 non-irradiated 10<sup>-8</sup> 10<sup>-9</sup> 10<sup>-10</sup> 50 100 150 200 0 Bias voltage[V]
  - Breakdown voltage is higher than 200V





### Radiation hardness (NIEL)



• The MPV is decreased after neutron irradiation of  $1 \times 10^{15} n_{eq}/cm^2$ .

Threshold: 1500 e

Bias: -200V (0 n<sub>eg</sub>/cm<sup>2</sup>)



### Threshold dispersion

- Un-irradiated

Chip: MONOPIX un-irradiated DAC setting: default TH: tuned by noise + 4mV Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix Enabled readout: col 16-20 HV: -200V Temp: dry ice Source: 2.5GeV electron

of pixel

#

•  $1 \times 10^{15} n_{eq} / cm^2$ 

Chip: MONOPIX irradiated DAC setting: default TH: tuned by noise Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix Enabled readout: col 16-20 HV: -130V

Temp: dry ice Source: 2.5GeV electron





### Noise occupancy

Un-irradiated

Chip: MONOPIX un-irradiated DAC setting: default TH: tuned by noise Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix Enabled readout: col 16-20 HV: -200V Temp: dry ice Source: 2.5GeV electron



• 1 x 10<sup>15</sup>n<sub>eq</sub>/cm<sup>2</sup>

Chip: MONOPIX irradiated DAC setting: default TH: tuned by noise Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix Enabled readout: col 16-20

#### HV: -130V

Temp: dry ice Source: 2.5GeV electron







Thickness of chip: 750um Chip: MONOPIX un-irradiated DAC setting: default TH: tuned by noise + 4mV Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix Enabled readout: col 16-20 HV: -200V - Un-irradiated Temp: dry ice 10<sup>5</sup> Source: 2.5GeV electron  $10^{4}$ 10<sup>3</sup> Background = 0.6%# 10<sup>2</sup> 10<sup>1</sup> 10<sup>0</sup> 10<sup>-1</sup> -1500 -1000 -500 0 500 1000 1500 Residual [µm]

Thickness of chip: 750um DAC setting: default TH: tuned by noise Flavor: CMOS-CSA, V1-D-Discr. Curr-Token In-pix Enabled readout: col 16-20

#### HV: -130V











CdTe has almost 100% detection efficiency up to 40keV, more than

50% at 60-100 kev where Si has only 1.5% irono@gmail.com

25.06.2019



Detector that is suite for SPring-8....

- Photon-counting large-area hybrid pixel detector, like
  PILATUS, which are very powerful for SR experiments.
- High sensitivity in high energy X-ray region (15 100keV)
  ⇒CdTe sensor
- Function to cut high energy X-ray
  ⇒Readouts with a window-type comparator

Concepts

UNIVERSITÄT BONN

 Diffraction pattern of Si with lower-energy comparator only (without higher-energy comparator)



- Without higher-energy comparator, higher order Xray from monochromator was mixed with the target energy X-ray in the detected image.
- ⇒Window-type comparator is
  ➡equired for low background images







### Specification of SP8-01

- Sensor
  - CdTe
  - 200 x 200 um/pixel, 16 x16 pixels/chip
- Contacts of sensors
  - In/CdTe/Pt-pixel, Al-pixel/CdTe/Pt, Pt-pixel/CdTe/Pt
  - Gold-stud bonding
- Readout with..
  - Analog amp. with time constant less than 100nsec
  - Readable both positive and negative charge
  - Switchable and adjustable gain: 15keV-40keV, 30keV-100keV
  - Poll-zero circuit and offset adjustor
  - Window-type comparator
  - 20 bits counter



### Gold-stud bonding



- Bump bonding
  - Wafer level process
  - High temperature and high pressure
  - © Si
  - ∆ CdTe



- In/Au stud bonding (Developed by JAXA)
  - Chip level process
  - low temperature and soft process
  - 🔘 CdTe

### UNIVERSITÄT BONN Concepts Specification of SP8-01

- Sensor
  - CdTe
  - 200 x 200 um/pixel, 16 x16 pixels/chip
- Contacts of sensors
  - In/CdTe/Pt-pixel, Al-pixel/CdTe/Pt, Pt-pixel/CdTe/Pt
  - Gold-stud bonding
- Readout with..
  - Analog amp. with time constant less than 100nsec
  - Readable both positive and negative charge
  - Switchable and adjustable gain: 15keV-40keV, 30keV-100keV
  - Poll-zero circuit and offset trim
  - Window-type comparator
  - 20 bits counter



### Design of ACIS

To realize all the requirements of the readout,⇒ Custom-designed ASIC for SP8-01 was developed





Result of Simulation of Analog Amp.



ASIC was simulated with input charge correspond to 10 -100keV in 100nsec  $\Rightarrow$  All the parameter s of circuit was fixed to match requirements.

Colloquium 2FHMA014/2019 /Toko Hirono/tokohirono@gmail.com





200µm

Colloquium 2FHMA014/2019 /Toko Hirono/tokohirono@gmail.com 200um



### Fabrication of Detector

- ASIC was fabricated
  - TMC 0.25um
  - 5mm x 5mm
- and CdTe was bonded to the ASIC.
  - 500um thick
  - Gold-stud bonding
  - 3 types of electrode
    - Pt-pixel/CdTe/Pt
    - Al-pixel/CdTe/Pt
    - In/CdTe/Pt-pixel





### Performance of ASIC





### Time Constant of Readout

- Test pulse was counted by changing test pulse frequency.
- Counts of counter was as same as input pulse up to 5Mcounts/s —



 $\Rightarrow$ Background noise 0.6 counts/hr/pixel with window-comparator 20-30 keV

Colloquium 2FHMA014/2019 /Toko Hirono/tokohirono@gmail.com 25.06.2019



- Beam test was performed at BL46XU, BL14B2/SPring-8





Results of Beam Test

- Lower-energy threshold scan at 30keV
  - S-curve at -49.5mV  $\Rightarrow$ 30keV
  - The slop at 30keV corresponds to Equivalent Noise Charge of 360 e-



<sup>C</sup>ellower<sup>2</sup>Energy<sup>2</sup>Threshold<sup>o</sup>[mv]<sup>@gmail.com</sup>

25.06.2019





25.06.2019



### Results of Beam Test

- Window scan
  - Higher/lower energy th. was scan both in same time.



# R Jults of Beam Test



- Linearity of high gain in 15-40 keV : 98%

low gain in 30-120keV: 90%



### Even more




Strip detector

## CdTe detector development

## CdTe has high sensitivity in 30-100 keV

Pixel detector CdTe + Custom-made ASIC





CdTe + Mythen (PSI) readout

- ASIC simulation
- Characterization of prototypes

## Upgrade and maintenance of control and DAQ system for beamlines

## FPGA board with VME interface







Kim et al,

Figure 4. Pixel front end schematic A) principle B) practical implementation C) presented circuit.

